Foot Pressure Wearable Sensors for Freezing of Gait Detection in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. FoG Detection Algorithm
- Looking at the total contact when no actual step is performed, but rather FoG with trembling of legs occurs leads to a weight shift between the left and right sides, not necessarily in combination with feet leaving the ground, but with a frequency that is higher than during normal walking;
- A gait cycle normally lasts about 1 s, and two peaks of the total contact force should be observed within this time span. Singular peaks of the weight curve (i.e., the total force) are in contrast to normal walking curves;
- Motor blocks could lead to a moderate excursion of the COP in the anterior-posterior direction at relatively high frequency (i.e., participants trying to step forward, but not even starting the step);
- A low range of the acceleration in the vertical axis indicates that feet are actually not being lifted.
- fraction of the weight span (w), defined as the maximum minus the minimum values of the total force under a foot relative to the estimated body weight (defined as 90% of the body weight measured during the clinical assessment);
- dominant frequency of the total force curve as obtained from the Fourier transform of the signal ();
- dominant frequency of the curve (anterior-posterior component) as obtained from the Fourier transform of the signal ();
- range of the acceleration curve (vertical axis, ).
2.4. Data Analysis
2.5. Wearability
3. Results
3.1. FoG Detection
3.2. Wearability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nutt, J.G.; Wooten, G.F. Diagnosis and initial management of Parkinon’s disease. N. Engl. J. Med. 2005, 353, 1021–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giladi, N.; Nieuwboer, A. Understanding and treating freezing of gait in Parkinsonism, proposed working definition, and setting the stage. Mov. Disord. 2008, 23. [Google Scholar] [CrossRef] [PubMed]
- Grabli, D.; Karachi, C.; Welter, M.L.; Lau, B.; Hirsch, E.C.; Vidailhet, M.; François, C. Normal and Pathological Gait: What We Learn from Parkinson’s Disease. J. Neurol. Neurosurgery Psychiatry 2012. [Google Scholar] [CrossRef] [Green Version]
- Nieuwboer, A. Cueing for freezing of gait in patients with Parkinson’s disease: A rehabilitation perspective. Mov. Disord. 2008, 23 (Suppl. 2), S475–S481. [Google Scholar] [CrossRef]
- Gilat, M.; Lígia Silva de Lima, A.; Bloem, B.R.; Shine, J.M.; Nonnekes, J.; Lewis, S.J. Freezing of Gait: Promising Avenues for Future Treatment. Parkinsonism Relat. Disorders 2018. [Google Scholar] [CrossRef]
- Rehman, R.Z.U.; Del Din, S.; Buckley, C.; Mico-Amigo, M.E.; Kirk, C.; Dunne-Willows, M.; Mazza, C.; Shi, J.Q.; Alcock, L.; Rochester, L. Accelerometry-based digital gait characteristics for classification of Parkinson’s disease: What counts? IEEE Open J. Eng. Med. Biol. 2020. [Google Scholar] [CrossRef]
- Mileti, I.; Germanotta, M.; Alcaro, S.; Pacilli, A.; Imbimbo, I.; Petracca, M.; Erra, C.; Di Sipio, E.; Aprile, I.; Rossi, S.; et al. Gait partitioning methods in Parkinson’s disease patients with motor fluctuations: A comparative analysis. In Proceedings of the 2017 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2017, Rochester, MN, USA, 7–10 May 2017; pp. 402–407. [Google Scholar] [CrossRef]
- Mileti, I.; Germanotta, M.; Di Sipio, E.; Imbimbo, I.; Pacilli, A.; Erra, C.; Petracca, M.; Rossi, S.; Del Prete, Z.; Bentivoglio, A.R.; et al. Measuring gait quality in Parkinson’s disease through real-time gait phase recognition. Sensors 2018, 18, 919. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Storm, F.; Zhao, Y.; Billings, S.A.; Pavic, A.; Mazzà, C.; Guo, L.Z. A new proxy measurement algorithm with application to the estimation of vertical ground reaction forces using wearable sensors. Sensors 2017, 17, 2181. [Google Scholar] [CrossRef]
- Tamburini, P.; Storm, F.; Buckley, C.; Bisi, M.C.; Stagni, R.; Mazzà, C. Moving from laboratory to real life conditions: Influence on the assessment of variability and stability of gait. Gait Posture 2018, 59, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Silva de Lima, A.L.; Evers, L.J.W.; Hahn, T.; Bataille, L.; Hamilton, J.L.; Little, M.A.; Okuma, Y.; Bloem, B.R.; Faber, M.J. Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: A systematic review. J. Neurol. 2017, 264, 1642–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mera, T.O.; Heldman, D.A.; Espay, A.J.; Payne, M.; Giuffrida, J.P. Feasibility of home-based automated Parkinson’s disease motor assessment. J. Neurosci. Methods 2012, 203, 152–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, R.I.; Kotschet, K.; Arfon, S.; Xu, Z.M.; Johnson, W.; Drago, J.; Evans, A.; Kempster, P.; Raghav, S.; Horne, M.K. Automated assessment of bradykinesia and dyskinesia in Parkinson’s disease. J. Park. Dis. 2012, 2, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rovini, E.; Maremmani, C.; Cavallo, F. How Wearable Sensors Can Support Parkinson’s Disease Diagnosis and Treatment: A Systematic Review. Front. Neurosci. 2017. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.T.; MacDougall, H.G.; Ondo, W.G. Ambulatory monitoring of freezing of gait in Parkinson’s disease. J. Neurosci. Methods 2008, 167, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Morris, T.R.; Cho, C.; Dilda, V.; Shine, J.M.; Naismith, S.L.; Lewis, S.J.; Moore, S.T. A comparison of clinical and objective measures of freezing of gait in Parkinson’s disease. Park. Relat. Disord. 2012, 18, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Bachlin, M.; Plotnik, M.; Roggen, D.; Maidan, I.; Hausdorff, J.M.; Giladi, N.; Troster, G. Wearable Assistant for Parkinson’s Disease Patients with the Freezing of Gait Symptom. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 436–446. [Google Scholar] [CrossRef]
- Mancini, M.; Smulders, K.; Cohen, R.G.; Horak, F.B.; Giladi, N.; Nutt, J.G. The clinical significance of freezing while turning in Parkinson’s disease. Neuroscience 2017, 343, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Popovic, M.; Djuric-Jovicic, M.; Radovanovic, S.; Petrovic, I.; Kostic, V. A simple method to assess freezing of gait in Parkinson’s disease patients. Braz. J. Med. Biol. Res. 2010, 43, 883–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djurić-Jovičić, M.; Jovičić, N.S.; Radovanović, S.M.; Stanković, I.D.; Popović, M.B.; Kostić, V.S. Automatic identification and classification of Freezing of Gait episodes in Parkinson’s disease patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 685–694. [Google Scholar] [CrossRef]
- Alam, M.N.; Garg, A.; Munia, T.T.K.; Fazel-Rezai, R.; Tavakolian, K. Vertical ground reaction force marker for Parkinson’s disease. PLoS ONE 2017, 12, e0175951. [Google Scholar] [CrossRef] [PubMed]
- Gibb, W.R.; Lees, A.J. The Relevance of the Lewy Body to the Pathogenesis of Idiopathic Parkinson’s Disease. J. Neurol. Neurosurgery Psychiatry 1988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goetz, C.G.; Poewe, W.; Rascol, O.; Sampaio, C.; Stebbins, G.T.; Counsell, C.; Giladi, N.; Holloway, R.G.; Moore, C.G.; Wenning, G.K.; et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief ScreeningTool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Tomlinson, C.L.; Stowe, R.; Patel, S.; Rick, C.; Gray, R.; Clarke, C.E. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 2010, 25, 2649–2653. [Google Scholar] [CrossRef]
- Santangelo, G.; Siciliano, M.; Pedone, R.; Vitale, C.; Falco, F.; Bisogno, R.; Siano, P.; Barone, P.; Grossi, D.; Santangelo, F.; et al. Normative data for the Montreal Cognitive Assessment in an Italian population sample. Neurol. Sci. 2015, 36, 585–591. [Google Scholar] [CrossRef] [Green Version]
- Goetz, C.G.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stebbins, G.T.; Stern, M.B.; Tilley, B.C.; Dodel, R.; Dubois, B.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric testing plan. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Mancini, M.; Priest, K.C.; Nutt, J.G.; Horak, F.B. Quantifying Freezing of Gait in Parkinson’s disease during the Instrumented Timed Up and Go test. IEEE Eng. Med. Biol. Soc. 2012, 1198–1201. [Google Scholar] [CrossRef] [Green Version]
- Ginis, P.; Nieuwboer, A.; Dorfman, M.; Ferrari, A.; Gazit, E.; Canning, C.G.; Rocchi, L.; Chiari, L.; Hausdorff, J.M.; Mirelman, A. Feasibility and effects of home-based smartphone-delivered automated feedback training for gait in people with Parkinson’s disease: A pilot randomized controlled trial. Park. Relat. Disord. 2016, 22, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Knight, J.F.; Baber, C. A Tool to Assess the Comfort of Wearable Computers. Hum. Factors J. Hum. Factors Ergon. Soc. 2005, 47, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.F.; Deen-Williams, D.; Arvanitis, T.N.; Baber, C.; Sotiriou, S.; Anastopoulou, S.; Gargalakos, M. Assessing the wearability of wearable computers. In Proceedings of the International Symposium on Wearable Computers, ISWC, Montreux, Switzerland, 11–14 October 2007; pp. 75–82. [Google Scholar] [CrossRef]
- Cancela, J.; Pastorino, M.; Tzallas, A.T.; Tsipouras, M.G.; Rigas, G.; Arredondo, M.T.; Fotiadis, D.I. Wearability Assessment of a Wearable System for Parkinson’s Disease Remote Monitoring Based on a Body Area Network of Sensors. Sensors 2014, 14, 17235–17255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brusse, K.J.; Zimdars, S.; Zalewski, K.R.; Steffen, T.M. Testing functional performance in people with Parkinson disease. Phys. Ther. 2005, 85, 134–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenkman, M.; Ellis, T.; Christiansen, C.; Barón, A.E.; Tickle-Degnen, L.; Hall, D.A.; Wagenaar, R. Profile of functional limitations and task performance among people with early-and middle-stage Parkinson disease. Phys. Ther. 2011, 91, 1339–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohanec, M.; Miljković, D.; Valmarska, A.; Mileva Boshkoska, B.; Gasparoli, E.; Gentile, G.; Koutsikos, K.; Marcante, A.; Antonini, A.; Gatsios, D.; et al. A decision support system for Parkinson disease management: Expert models for suggesting medication change. J. Decis. Syst. 2018, 27, 164–172. [Google Scholar] [CrossRef]
- Botros, A.; Schütz, N.; Camenzind, M.; Urwyler, P.; Bolliger, D.; Vanbellingen, T.; Kistler, R.; Bohlhalter, S.; Müri, R.M.; Mosimann, U.P.; et al. Long-Term Home-Monitoring Sensor Technology in Patients with Parkinson’s Disease—Acceptance and Adherence. Sensors 2019, 19, 5169. [Google Scholar] [CrossRef] [Green Version]
Demographic and Clinical Data | Notes | Mean | SD | Min | Max |
---|---|---|---|---|---|
Age (years) | – | 68.60 | 10.69 | 44 | 88 |
Education (years) | – | 8.00 | 5.04 | 2 | 18 |
Disease duration (years) | – | 10.45 | 5.35 | 3 | 26 |
DAED | received by only 12 participants | 220.25 | 131.33 | 80 | 550 |
LEDD | – | 1008.87 | 624.41 | 133 | 2860.5 |
MoCA | – | 22.06 | 5.627 | 12 | 30 |
Motor Recording Protocol | ||
---|---|---|
1. | Lie on the bed for 1 min | |
2. | Rise from the bed, and sit on a chair located beside the bed for 1 min | |
3. | Perform the Timed Up and Go test (TUG) | |
4. | Stand up from the chair and perform a series of activities: | |
a. | Stand (without moving) for 1 min (While standing, avoid communication with the patient. The clinician stands in front of the patient, not on the patient’s side, to avoid the patient turning towards the clinician.). The camera is placed in front of the patient, in order to capture postural abnormalities on the frontal plane | |
b. | Walk for a distance of 5 m, and open the door (with the arm with the wristband); then walk through the door, and exit the room; go back in the room, and close the door (repeat 3 times; this should evoke freezing, if present). | |
c. | Two minute walking test | |
d. | Walk back to the room | |
e. | Stop, and drink a few sips from a glass of water (repeat the sequence: take the glass with the arm with the smartband; drink and leave the glass 3 times) | |
f. | Stand (without moving) for 1 min. While standing, the clinician avoids communication with the patient. The clinician stands in front of the patient, not on the patient’s side, to avoid the patient turning towards the clinician. This time, the patient is recorded from one side (the side recorded is the one where the patient is wearing the wristband), in order to capture any postural abnormalities for the sagittal plane; | |
5. | 360° turn test clockwise + anticlockwise (record seconds and number of steps) |
Variable | OFF State | ON State | Statistics | ||||
---|---|---|---|---|---|---|---|
M | SD | M | SD | df | F | p | |
UPDRS Item 3.3b: Rigidity severity R | 1.20 | 0.88 | 0.65 | 0.61 | 1 | 17.5 | 0.000 |
UPDRS Item 3.3c: Rigidity severity L | 1.29 | 0.91 | 0.71 | 0.82 | 1 | 15.015 | 0.000 |
UDPRS Item 3.4a: Finger tapping R hand | 1.55 | 0.90 | 1.20 | 0.83 | 1 | 5.29 | 0.023 |
UDPRS Item 3.4b: Finger tapping L hand | 1.82 | 0.86 | 1.49 | 0.83 | 1 | 4.998 | 0.027 |
UDPRS Item 3.10: Gait | 1.73 | 0.87 | 1.12 | 0.74 | 1 | 19.46 | 0.000 |
UDPRS Item 3.17a: Tremor severity R arm | 0.45 | 0.85 | 0.19 | 0.43 | 1 | 5.394 | 0.022 |
UDPRS Item 3.17b: Tremor severity L arm | 0.65 | 0.87 | 0.20 | 0.58 | 1 | 12.516 | 0.001 |
UDPRS Item 3.17c: Tremor severity R leg | 0.30 | 0.70 | 0.07 | 0.26 | 1 | 6.521 | 0.012 |
UDPRS Item 3.17d: Tremor severity L leg | 0.36 | 0.84 | 0.13 | 0.51 | 1 | 3.867 | 0.05 |
2MWT distance (m) | 91.37 | 48.09 | 113.73 | 49.48 | 1 | 6.35 | 0.013 |
TUG (s) | 41.10 | 53.26 | 15.16 | 4.32 | 1 | 14.619 | 0.000 |
360° turn time L (s) | 26.98 | 94.04 | 6.25 | 3.42 | 1 | 3.012 | 0.085 |
360° turn steps L | 13.62 | 6.75 | 10.23 | 4.50 | 1 | 10.012 | 0.002 |
360° turn time R (s) | 14.26 | 16.05 | 6.03 | 2.91 | 1 | 15.735 | 0.000 |
360° turn steps R | 14.73 | 7.61 | 10.03 | 4.09 | 1 | 17.229 | 0.000 |
Yes | No | Yes | No | df | p | ||
Dyskinesia | 4 | 64 | 28 | 42 | 2 | 23.785 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcante, A.; Di Marco, R.; Gentile, G.; Pellicano, C.; Assogna, F.; Pontieri, F.E.; Spalletta, G.; Macchiusi, L.; Gatsios, D.; Giannakis, A.; et al. Foot Pressure Wearable Sensors for Freezing of Gait Detection in Parkinson’s Disease. Sensors 2021, 21, 128. https://doi.org/10.3390/s21010128
Marcante A, Di Marco R, Gentile G, Pellicano C, Assogna F, Pontieri FE, Spalletta G, Macchiusi L, Gatsios D, Giannakis A, et al. Foot Pressure Wearable Sensors for Freezing of Gait Detection in Parkinson’s Disease. Sensors. 2021; 21(1):128. https://doi.org/10.3390/s21010128
Chicago/Turabian StyleMarcante, Andrea, Roberto Di Marco, Giovanni Gentile, Clelia Pellicano, Francesca Assogna, Francesco Ernesto Pontieri, Gianfranco Spalletta, Lucia Macchiusi, Dimitris Gatsios, Alexandros Giannakis, and et al. 2021. "Foot Pressure Wearable Sensors for Freezing of Gait Detection in Parkinson’s Disease" Sensors 21, no. 1: 128. https://doi.org/10.3390/s21010128
APA StyleMarcante, A., Di Marco, R., Gentile, G., Pellicano, C., Assogna, F., Pontieri, F. E., Spalletta, G., Macchiusi, L., Gatsios, D., Giannakis, A., Chondrogiorgi, M., Konitsiotis, S., Fotiadis, D. I., & Antonini, A. (2021). Foot Pressure Wearable Sensors for Freezing of Gait Detection in Parkinson’s Disease. Sensors, 21(1), 128. https://doi.org/10.3390/s21010128