Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Idea of Experiment
2.2. Dataset Establishment and Preprocessing
2.3. Feature Extraction of Crops and Weeds
2.3.1. HOG Features
2.3.2. Hu Moment Invariants Features
2.3.3. Rotation Invariant LBP Features
2.3.4. Gabor Features
2.3.5. Gray Level Co-Occurrence Matrix Features
2.3.6. Gray Level-Gradient Co-Occurrence Matrix Features
2.4. Identification and Detection Process of Weeds and Corn Seedlings
2.4.1. Training and Validation of Leaves Dataset
2.4.2. Test of Actual Field Dataset at Corn Seedling Stage
3. Results
3.1. Experiment on Leaves DataSet
3.2. Actual Field Image Test
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Su, W.H. Advanced Machine Learning in Point Spectroscopy, RGB- and Hyperspectral-Imaging for Automatic Discriminations of Crops and Weeds: A Review. Smart Cities 2020, 3, 767–792. [Google Scholar] [CrossRef]
- Liu, B.; Li, R.; Li, H.; You, G.; Yan, S.; Tong, Q. Crop/Weed Discrimination Using a Field Imaging Spectrometer System. Sensors 2019, 19, 5154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Ji, Z. Gabor wavelet selection and SVM classification for object recognition. Acta Autom. Sin. 2009, 35, 350–355. [Google Scholar] [CrossRef]
- Kamilaris, A.; Francesc, X.; Boldu, P. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Wong, W.K.; Chekima, A.; Mariappan, M.; Khoo, B.; Nadarajan, M. Probabilistic multi-SVM weed species classification for weed scouting and selective spot weeding. In Proceedings of the 2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), Kuala Lumpur, Malaysia, 15–16 December 2014; pp. 63–68. [Google Scholar]
- Li, X.F.; Zhu, W.X.; Ji, B.; Liu, B. Weed Identification Based on Features Optimization and LS-SVM in the Cotton Field. Trans. Chin. Soc. Agric. Mach. 2010, 41, 168–172. [Google Scholar]
- Chen, Y.J.; Zhao, B.; Li, S.J.; Liu, L.; Yuan, J.W.; Zhang, Y.L. Weed Reverse Positioning Method and Experiment Based on Multi-feature. Trans. Chin. Soc. Agric. Mach. 2015, 46, 257–262. [Google Scholar]
- Burgos-Artizzu, X.P.; Ribeiro, A.; Guijarro, M.; Pajares, G. Real-time image processing for crop/weed discrimination in maize fields. Comput. Electron. Agric. 2011, 75, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Ishak, A.J.; Hussain, A.; Mustafa, M.M. Weed image classification using Gabor wavelet and gradient field distribution. Comput. Electron. Agric. 2009, 66, 53–61. [Google Scholar] [CrossRef]
- Naresh, Y.G.; Nagendraswamy, H.S. Classification of medicinal plants: An approach using modified LBP with symbolic representation. Neurocomputing 2016, 173, 1789–1797. [Google Scholar] [CrossRef]
- Le, V.N.; Apopei, B.; Alameh, K. Effective plant discrimination based on the combination of local binary pattern operators and multiclass support vector machine methods. Inf. Process. Agric. 2019, 6, 116–131. [Google Scholar]
- Ma, Y.; Feng, Q.; Yang, M.; Li, M.Q. Wine grape leaf detection based on HOG. Comput. Eng. Appl. 2016, 52, 158–161. [Google Scholar]
- Midtiby, H.S.; Astrand, B.; Jørgensen, O.; Jørgensen, R.N. Upper limit for context–based crop classification in robotic weeding applications. Biosyst. Eng. 2016, 146, 183–192. [Google Scholar] [CrossRef]
- Tang, J.L.; Chen, X.Q.; Miao, R.H.; Wang, D. Weed detection using image processing under different illumination for site-specific areas spraying. Comput. Electron. Agric. 2016, 122, 103–111. [Google Scholar] [CrossRef]
- Huang, S.P.; Wu, S.H.; Sun, C.; Ma, X.; Jiang, Y.; Qi, L. Deep localization model for intra-row crop detection in paddy field. Comput. Electron. Agric. 2020, 169, 105203. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, W.; Wei, X.H. A review on weed detection using ground-based machine vision and image processing techniques. Comput. Electron. Agric. 2019, 158, 226–240. [Google Scholar] [CrossRef]
- Ghazali, K.H.; Razali, S.; Mustafa, M.M.; Hussain, A. Machine vision system for automatic weeding strategy in Oil Palm Plantation using image processing technique. Am. Eurasian J. Agric. Environ. Sci. 2008, 3, 451–458. [Google Scholar]
- Mao, W.H.; Cao, J.J.; Jiang, H.H.; Wang, Y.M.; Zhang, X.C. In field weed detection method based on multi-features. Trans. CSAE 2007, 23, 206–209. [Google Scholar]
- Tang, Z.; Su, Y.; Er, M.J.; Qi, F.; Zhang, L.; Zhou, J. A local binary pattern based texture descriptors for classification of tea leaves. Neurocomputing 2015, 168, 1011–1023. [Google Scholar] [CrossRef]
- Chowdhury, S.; Verma, B.; Stockwell, D. A novel texture feature based multiple classifier technique for roadside vegetation classification. Expert Syst. Appl. 2015, 42, 5047–5055. [Google Scholar] [CrossRef]
- He, D.J.; Qiao, Y.L.; Li, P.; Gao, Z.; Li, H.Y.; Tang, J.L. Weed Recognition Based on SVM-DS Multi-feature Fusion. Trans. Chin. Soc. Agric. Mach. 2013, 44, 182–187. [Google Scholar]
- Liu, K.; Kan, J.M. Improved deep belief networks and multi-feature fusion for leaf identification. Neurocomputing 2016, 216, 460–467. [Google Scholar] [CrossRef]
- Chaki, J.; Parekh, R.; Bhattacharya, S. Plant leaf recognition using texture and shape features with neural classifiers. Pattern Recognit. Lett. 2015, 58, 61–68. [Google Scholar] [CrossRef]
- Bakhshipour, A.; Jafari, A. Evaluation of support vector machine and artificial neural networks in weed detection using shape features. Comput. Electron. Agric. 2018, 145, 153–160. [Google Scholar] [CrossRef]
- Gómez-Flores, W.; Garza-Saldaña, J.J.; Varela-Fuentes, S.E. Detection of Huanglongbing disease based on intensity-invariant texture analysis of images in the visible spectrum. Comput. Electron. Agric. 2019, 162, 825–835. [Google Scholar] [CrossRef]
- Hu, M.K. Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 1962, 8, 179–187. [Google Scholar]
- Chen, C.C. Improved moment invariants for shape discrimination. Pattern Recognit. 1993, 26, 683–686. [Google Scholar] [CrossRef]
- Zhang, W.; He, J.G. Construction and generalization of Hu moment invariants. J. Comput. Appl. 2010, 30, 2449–2452. [Google Scholar] [CrossRef]
- Turkoglu, M.; Hanbay, D. Leaf-based plant species recognition based on improved local binary pattern and extreme learning machine. Phys. A Stat. Mech. Appl. 2019, 527, 121297. [Google Scholar] [CrossRef]
- Chen, Y.M.; Lin, P.; He, Y.; Xu, Z.H. Classification of broadleaf weed images using Gabor wavelets and Lie group structure of region covariance on Riemannian manifolds. Biosyst. Eng. 2011, 109, 220–227. [Google Scholar] [CrossRef]
- Tang, L.; Tian, L.; Steward, B.L. Classification of broadleaf and grass weeds using Gabor wavelets and an artificial neural network. Trans. ASAE 2003, 46, 1247–1254. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.G. Texture analysis method based on gray gradient co-occurrence matrix. Acta Autom. Sin. 1984, 10, 22–25. [Google Scholar]
Category | Training | Validation | Actual Field Test Image |
---|---|---|---|
Total number of images | 1400 | 600 | 400 |
Positive sample/corn seedling | 700 | 300 | / |
Negative sample/weed | 700 | 300 | / |
Size | 256 × 256 | 256 × 256 | 1024 × 600 |
Cell Size | Dimension | Accuracy (%) | Average Training Time(s) |
---|---|---|---|
8 × 8 | 34,596 | 82.5 | 90.449 |
16 × 16 | 8100 | 81.3 | 29.648 |
32 × 32 | 1764 | 84.5 | 18.208 |
64 × 64 | 324 | 87.8 | 16.530 |
128 × 128 | 36 | 84.9 | 15.725 |
Cell Size | Dimension | Accuracy (%) | Average Training Time(s) |
---|---|---|---|
8 × 8 | 10,240 | 89.4 | 41.157 |
16 × 16 | 2560 | 89.8 | 19.731 |
32 × 32 | 640 | 87.4 | 16.190 |
64 × 64 | 160 | 90.6 | 96.308 |
128 × 128 | 40 | 88.4 | 99.379 |
Single Feature | Multi Feature | ||||||
---|---|---|---|---|---|---|---|
Feature | Dimension | Feature | Dimension | Feature | Dimension | Feature | Dimension |
HOG | 324 | RotLBP+HOG | 484 | HOG+GLCM | 330 | RotLBP+HOG+Gabor | 844 |
RotLBP | 160 | RotLBP+Gabor | 520 | Gabor+GGCM | 375 | GGCM+RotLBP+HOG | 499 |
Gabor | 360 | RotLBP+GLCM | 166 | Gabor+HU | 368 | GLCM+ RotLBP +HOG | 490 |
GLCM | 6 | GGCM+RotLBP | 175 | Gabor+GLCM | 366 | RotLBP+HOG+Gabor+GLCM | 850 |
GGCM | 15 | RotLBP+HU | 168 | GGCM+HU | 23 | RotLBP+HOG+Gabor+GGCM | 859 |
HU | 8 | HOG+Gabor | 684 | GGCM+HOG | 339 | RotLBP+HOG+ Gabor+HU+GGCM | 867 |
Num | Feature Combination | PCA Dimension /Initial Dimension | Average Accuracy (%) | Training Time (s) | Prediction Speed (obs/s) | |
---|---|---|---|---|---|---|
After PCA | Before PCA | |||||
1 | RotLBP | 95/160 | 91.40 | 90.60 | 2.1701 | 10,000 |
2 | GGCM | 15/15 | 87.80 | 90.80 | 68.807 | 150,000 |
3 | HOG | 55/324 | 88.80 | 87.80 | 2.2017 | 12,000 |
4 | GLCM | 6/6 | 88.80 | 88.80 | 12.137 | 49,000 |
5 | Gabor | 360/360 | 84.60 | 87.40 | 7.5382 | 7500 |
6 | HU | 8/8 | 82.10 | 85.00 | 2.1648 | 20,000 |
7 | GGCM+RotLBP | 94/175 | 97.50 | 90.50 | 2.1903 | 10,000 |
8 | HOG+RotLBP+GLCM+Gabor | 66/850 | 97.00 | 90.50 | 4.2998 | 5600 |
9 | HOG+RotLBP | 102/484 | 96.60 | 88.80 | 3.247 | 7500 |
10 | GLCM+RotLBP | 105/166 | 95.90 | 90.80 | 2.1812 | 9700 |
11 | RotLBP+HU | 61/168 | 95.70 | 89.60 | 1.684 | 14,000 |
12 | GGCM+RotLBP+HOG | 99/499 | 95.30 | 89.50 | 3.259 | 7400 |
13 | GLCM+RotLBP+HOG | 179/490 | 95.20 | 89.60 | 4.2638 | 4800 |
14 | HOG+RotLBP+Gabor+GGCM | 86/859 | 94.90 | 89.30 | 5.3031 | 6300 |
15 | RotLBP+HOG+Gabor+HU+GGCM | 107/867 | 94.80 | 86.10 | 6.531 | 4900 |
16 | GGCM+HOG | 100/339 | 94.50 | 89.30 | 2.7609 | 7700 |
17 | RotLBP+Gabor | 60/520 | 94.40 | 89.00 | 3.153 | 8600 |
18 | HOG+RotLBP+Gabor | 84/844 | 93.90 | 89.80 | 5.2385 | 6200 |
19 | GGCM+HU | 20/23 | 92.50 | 89.60 | 2.1829 | 27,000 |
20 | HOG+GLCM | 35/330 | 92.00 | 87.50 | 2.1553 | 12,000 |
21 | GGCM+Gabor | 375/375 | 87.30 | 91.30 | 53.75 | 8900 |
22 | HOG+Gabor | 684/684 | 85.30 | 91.10 | 13.819 | 3600 |
23 | Gabor+GLCM | 30/366 | 90.50 | 88.50 | 9.6001 | 7100 |
24 | Gabor+HU | 368/368 | 85.70 | 90.20 | 8.2748 | 8100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wu, Z.; Zhao, B.; Fan, C.; Shi, S. Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine. Sensors 2021, 21, 212. https://doi.org/10.3390/s21010212
Chen Y, Wu Z, Zhao B, Fan C, Shi S. Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine. Sensors. 2021; 21(1):212. https://doi.org/10.3390/s21010212
Chicago/Turabian StyleChen, Yajun, Zhangnan Wu, Bo Zhao, Caixia Fan, and Shuwei Shi. 2021. "Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine" Sensors 21, no. 1: 212. https://doi.org/10.3390/s21010212