Super Resolution Infrared Thermal Imaging Using Pansharpening Algorithms: Quantitative Assessment and Application to UAV Thermal Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pansharpening Algorithms
- IHS: Fast Intensity-Hue-Saturation (FIHS) image fusion [26].
- PCA: Principal Component Analysis [3].
- BDSD: Band-Dependent Spatial-Detail with local parameter estimation [27].
- GS: Gram Schmidt (Mode 1) [28].
- PRACS: Partial Replacement Adaptive Component Substitution [29].
- HPF: High-Pass Filtering with 5 × 5 box filter for 1:4 fusion [3]
- INDUSION: Decimated Wavelet Transform (DWT) using an additive injection model [32].
- MTF-GLP-ECB: MTF-GLP with Enhanced Context-Based model (ECB) algorithm [34].
2.2. Wald’s Protocol
2.3. Quality Metrics
2.3.1. Root Mean Squared Error (RMSE)
2.3.2. Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS)
2.3.3. Spectral Angle Mapper (SAM)
2.3.4. Peak Signal to Noise Ratio (PSNR)
2.3.5. Universal Quality Index (UQI)
2.4. Datasets
2.4.1. FLIR ADAS Dataset
2.4.2. Illescas UAV Dataset
3. Results
4. Discussion
- The results for the false colour and grayscale images are quantitatively different. Grayscale images perform better than false colour images, thus confirming our hypothesis of separating the image fusion products into false colour and grayscale. The values of the RMSE index obtained for the images in grayscale are similar or even lower than in researches in the same field (RMSE similar to 31) [9]. The final grayscale image should be chosen for the subsequent processes, even when the same or a different false colour table needs to be applied again
- Apart from certain specific values, the two different families of algorithms have a similar performance. Minor differences in the way the different algorithms process the data produce better results. One instance of this can be seen in the case of the CS family with the BDSD algorithm, which performs better than the rest of the family. Figure 2 also reveals homogeneity among the values in the MRA family in all the indices.
- In general, MRA algorithms perform better than CS methods in thermal imaging, except in the case of the Component Substitution BDSD algorithm in the Illescas UAV dataset (Table 4), which has the best values in almost all the quality indices (RMSE = 7.400, ERGAS = 1.084, SAM = 0.048, PSNR = 31.014, UQI = 0.995). Haselwimmer et al. [5] suggest the IHS algorithm to fuse thermal and RGB images. Our work confirms that IHS is not the best choice of algorithm. Among the CS methods, the BDSD algorithm achieves the best results.
- Radiometrically speaking, there is no single best choice. ERGAS and SAM indices appear similar in both cases, although the algorithms from the MRA family perform slightly better. This agrees with the general behaviour described for these algorithms in the literature [49]. The values obtained in the SAM index (SAM < 1) are even better than those from other works on multi- and hyperspectral data fusion (SAM > 1) [17].
- Spatial reconstruction is better in MRA methods. PSNR has higher values in both datasets, denoting a greater geometrical quality of the spatial details. Again, the BDSD algorithm is the best in terms of spatial reconstruction.
- Regarding the behavior of the datasets, the UAV dataset obtains better results in all indices, possibly due to the nature of the FLIR ADAS dataset. The lack of homogeneity between the distances to the objects, may explain the poorer performance of the pansharpening algorithms, and may also be the reason for higher dispersion values in the whole FLIR dataset. We could fix this by decomposing the images in subzones where the distances were homogeneous and analyzing their influence.
- Our work allows the use of thermal sensors with a lower resolution than other types of sensors used simultaneously in the same project, since this method enhances the resolution of the thermal images and homogenises their resolution. One limitation is that it depends on the resolution ratio between visible and thermal spectrum images. Here, a ratio of more than four may lead to unexpected artifacts and to the failure of processes [50].
- Although the results may vary depending on the false colour representation of the thermal information adopted, the validation by the grayscale band highlights the interest of further developments to adjust the parameters of the algorithms to adapt them specifically to infrared thermal images.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kohin, M.; Butler, N.R. Performance limits of uncooled VO x microbolometer focal plane arrays. In Proceedings of the Infrared Technology and Applications XXX, Orlando, FL, USA, 12–16 April 2004; Volume 5406, p. 447. [Google Scholar] [CrossRef]
- Yue, L.; Shen, H.; Li, J.; Yuan, Q.; Zhang, H.; Zhang, L. Image super-resolution: The techniques, applications, and future. Signal Process. 2016, 128, 389–408. [Google Scholar] [CrossRef]
- Chavez, P.S.; Sides, S.C.; Anderson, J.A. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic. Photogramm. Eng. Remote Sens. 1991. [Google Scholar] [CrossRef]
- Lagüela, S.; Armesto, J.; Arias, P.; Herráez, J. Automation of thermographic 3D modelling through image fusion and image matching techniques. Autom. Constr. 2012, 27, 24–31. [Google Scholar] [CrossRef]
- Kuenzer, C.; Dech, S. Thermal remote sensing Sensors, Methods, Applications. In Remote Sensing and Digital Image Processing; Kuenzer, C., Dech, S., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 17, pp. 287–313. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhai, G.; Wang, J.; Hu, C.; Chen, Y. Color guided thermal image super resolution. In Proceedings of the VCIP 2016—30th Anniversary of Visual Communication and Image Processing, Chengdu, China, 27–30 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Poblete, T.; Ortega-Farías, S.; Ryu, D. Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard. Sensors 2018, 18, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, D.; Lucieer, A.; Malenovský, Z.; King, D.H.; Robinson, S.A. Spatial co-registration of ultra-high resolution visible, multispectral and thermal images acquired with a micro-UAV over antarctic moss beds. Remote Sens. 2014, 6, 4003–4024. [Google Scholar] [CrossRef] [Green Version]
- Mandanici, E.; Tavasci, L.; Corsini, F.; Gandolfi, S. A multi-image super-resolution algorithm applied to thermal imagery. Appl. Geomat. 2019, 11, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Almasri, F.; Debeir, O. Multimodal Sensor Fusion In Single Thermal image Super-Resolution. In Asian Conference on Computer Vision; Springer: Cham, Switzerland, 2018; Volume 11367, pp. 418–433. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.; Chen, Y.; Zhou, J.; Wang, J.; Liu, W.; Voogt, J.; Zhu, X.; Quan, J.; Li, J. Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sens. Environ. 2013, 131, 119–139. [Google Scholar] [CrossRef]
- Pu, R. Assessing scaling effect in downscaling land surface temperature in a heterogenous urban environment. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102256. [Google Scholar] [CrossRef]
- Eismann, M.T.; Hardie, R.C. Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions. IEEE Trans. Geosci. Remote Sens. 2005, 43, 455–465. [Google Scholar] [CrossRef]
- Kwan, C.; Budavari, B.; Bovik, A.C.; Marchisio, G. Blind Quality Assessment of Fused WorldView-3 Images by Using the Combinations of Pansharpening and Hypersharpening Paradigms. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1835–1839. [Google Scholar] [CrossRef]
- Loncan, L.; de Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simoes, M.; et al. Hyperspectral Pansharpening: A Review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Selva, M.; Aiazzi, B.; Butera, F.; Chiarantini, L.; Baronti, S. Hyper-sharpening: A first approach on SIM-GA data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3008–3024. [Google Scholar] [CrossRef]
- Yokoya, N.; Grohnfeldt, C.; Chanussot, J. Hyperspectral and multispectral data fusion: A comparative review of the recent literature. IEEE Geosci. Remote Sens. Mag. 2017, 5, 29–56. [Google Scholar] [CrossRef]
- Jung, H.S.; Park, S.W. Multi-sensor fusion of landsat 8 thermal infrared (TIR) and panchromatic (PAN) images. Sensors 2014, 14, 24425–24440. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Huang, X.; Van Coillie, F.; Thoonen, G.; Pizurica, A.; Scheunders, P.; Philips, W. Two-stage fusion of thermal hyperspectral and visible RGB image by PCA and guided filter. In Proceedings of the Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing, Tokyo, Japan, 2–5 June 2015; Volume 2015, pp. 1–4. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O. Sentinel-2 image fusion using a deep residual network. Remote Sens. 2018, 10, 1290. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhou, M.Y.; Sun, W.B.; Bai, X.W.; Li, D.J.; Zhang, Y.Y. Image Alignment Software Development Based on OpenCV. In Proceedings of the 2015 4th International Conference on Energy and Environmental Protection (ICEEP 2015), Shenzhen, China, 3–4 June 2015. [Google Scholar]
- Adel, E.; Elmogy, M.; Elbakry, H. Image Stitching System Based on ORB Feature-Based Technique and Compensation Blending. Int. J. Adv. Comput. Sci. Appl. 2015, 6, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Yu, Z.; Gong, Y. An Improved ORB Algorithm of Extracting and Matching Features. Int. J. Signal Process. Image Process. Pattern Recognit. 2015, 8, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Chang, N.B.; Bai, K. Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Chen, C.; Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. Twenty-Five Years of Pansharpening. In Signal and Image Processing for Remote Sensing, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 533–548. [Google Scholar] [CrossRef]
- Tu, T.M.; Su, S.C.; Shyu, H.C.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion 2001, 2, 177–186. [Google Scholar] [CrossRef]
- Garzelli, A.; Nencini, F.; Capobianco, L. Optimal MMSE pan sharpening of very high resolution multispectral images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 228–236. [Google Scholar] [CrossRef]
- Laben, C.; Brower, B. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent 6011875A, 4 January 2000. [Google Scholar]
- Choi, J.; Yu, K.; Kim, Y. A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Trans. Geosci. Remote Sens. 2011, 49, 295–309. [Google Scholar] [CrossRef]
- Liu, J.G. Smoothing Filter-based Intensity Modulation: A spectral preserve image fusion technique for improving spatial details. Int. J. Remote Sens. 2000, 21, 3461–3472. [Google Scholar] [CrossRef]
- Wald, L.; Ranchin, T. Liu ’Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details’. Int. J. Remote Sens. 2002, 23, 593–597. [Google Scholar] [CrossRef]
- Khan, M.M.; Chanussot, J.; Condat, L.; Montanvert, A. Indusion: Fusion of multispectral and panchromatic images using the induction scaling technique. IEEE Geosci. Remote Sens. Lett. 2008, 5, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored multiscale fusion of high-resolution MS and pan imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. An MTF-based spectral distortion minimizing model for pan-sharpening of very high resolution multispectral images of urban areas. In Proceedings of the 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, URBAN 2003, Berlin, Germany, 22–23 May 2003; pp. 90–94. [Google Scholar] [CrossRef]
- Lee, J.; Lee, C. Fast and efficient panchromatic sharpening. IEEE Trans. Geosci. Remote Sens. 2010, 48, 155–163. [Google Scholar] [CrossRef]
- Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [Google Scholar] [CrossRef]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Ranchin, T.; Wald, L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation. Photogramm. Eng. Remote Sens. 2000, 66, 49–61. [Google Scholar]
- Sewar 0.4.4 Python Package. Available online: https://pypi.org/project/sewar/ (accessed on 26 September 2020).
- Vijayaraj, V.; O’Hara, C.; Younan, N. Quality analysis of pansharpened images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2004. IGARSS ’04, Anchorage, AK, USA, 20–24 September 2004; Volume 1, pp. 85–88. [Google Scholar] [CrossRef]
- Pohl, C.; van Genderen, J. Remote Sensing Image Fusion; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Wald, L. Quality of high resolution synthesised images: Is there a simple criterion? In Proceedings of the Third Conference Fusion of Earth Data: Merging Point Measurements, Raster Maps and Remotely Sensed Images, Sophia Antipolis, France, 26–28 January 2000; pp. 99–103. [Google Scholar]
- Yokoya, N. Texture-guided multisensor superresolution for remotely sensed images. Remote Sens. 2017, 9, 316. [Google Scholar] [CrossRef] [Green Version]
- Bayarri, V.; Sebastián, M.A.; Ripoll, S. Hyperspectral imaging techniques for the study, conservation and management of rock art. Appl. Sci. 2019, 9, 5011. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- FLIR Thermal Dataset for Algorithm Training. Available online: https://www.flir.com/oem/adas/dataset/ (accessed on 19 October 2020).
- Lagüela, S.; González-Jorge, H.; Armesto, J.; Arias, P. Calibration and verification of thermographic cameras for geometric measurements. Infrared Phys. Technol. 2011, 54, 92–99. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Lotti, F.; Selva, M. A comparison between global and context-adaptive pansharpening of multispectral images. IEEE Geosci. Remote Sens. Lett. 2009, 6, 302–306. [Google Scholar] [CrossRef]
- Dumitrescu, D.; Boiangiu, C.A. A Study of Image Upsampling and Downsampling Filters. Computers 2019, 8, 30. [Google Scholar] [CrossRef] [Green Version]
Algorithm | RMSE | ERGAS | SAM | PSNR | UQI | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
PCA | 72.565 | 31.019 | 118.645 | 98.245 | 0.811 | 0.187 | 6.117 | 1.147 | 0.488 | 0.077 |
IHS | 57.025 | 33.458 | 71.754 | 55.219 | 0.766 | 0.234 | 6.318 | 1.080 | 0.462 | 0.151 |
BDSD | 59.318 | 32.405 | 55.732 | 43.369 | 0.765 | 0.279 | 6.205 | 1.095 | 0.530 | 0.092 |
GS | 67.068 | 30.342 | 77.425 | 57.028 | 0.815 | 0.190 | 5.866 | 1.151 | 0.472 | 0.091 |
PRACS | 46.300 | 35.710 | 51.463 | 44.451 | 0.728 | 0.219 | 6.233 | 1.067 | 0.558 | 0.097 |
HPF | 46.014 | 36.066 | 53.070 | 45.810 | 0.722 | 0.217 | 6.254 | 1.081 | 0.443 | 0.164 |
SFIM | 49.102 | 35.220 | 56.999 | 48.461 | 0.756 | 0.251 | 6.208 | 1.078 | 0.555 | 0.097 |
INDUSION | 39.666 | 29.428 | 48.817 | 41.172 | 0.736 | 0.218 | 6.196 | 1.078 | 0.435 | 0.170 |
MTF-GLP | 46.426 | 35.898 | 53.918 | 46.157 | 0.723 | 0.214 | 6.255 | 1.072 | 0.440 | 0.168 |
MTF-GLP-HPM | 49.816 | 35.031 | 58.035 | 49.192 | 0.759 | 0.243 | 6.186 | 1.080 | 0.553 | 0.097 |
MTF-GLP-HPM_PP | 50.127 | 33.860 | 60.282 | 53.623 | 0.884 | 0.360 | 5.913 | 1.400 | 0.481 | 0.150 |
MTF-GLP-ECB | 47.818 | 35.316 | 54.997 | 47.433 | 0.740 | 0.250 | 6.277 | 1.035 | 0.426 | 0.196 |
Algorithm | RMSE | ERGAS | SAM | PSNR | UQI | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
PCA | 66.084 | 13.109 | 40.524 | 5.339 | 0.323 | 0.069 | 11.883 | 1.597 | 0.854 | 0.046 |
IHS | 46.524 | 3.162 | 27.716 | 1.736 | 0.224 | 0.018 | 14.798 | 0.599 | 0.891 | 0.020 |
BDSD | 26.167 | 1.415 | 17.235 | 1.079 | 0.125 | 0.008 | 19.789 | 0.472 | 0.925 | 0.014 |
GS | 88.872 | 11.741 | 29.372 | 3.428 | 0.438 | 0.065 | 9.241 | 1.253 | 0.798 | 0.044 |
PRACS | 42.932 | 5.172 | 17.977 | 1.444 | 0.207 | 0.026 | 15.537 | 1.026 | 0.919 | 0.015 |
HPF | 38.962 | 3.236 | 23.463 | 2.332 | 0.187 | 0.016 | 16.350 | 0.758 | 0.947 | 0.006 |
SFIM | 44.139 | 4.425 | 29.593 | 1.927 | 0.212 | 0.023 | 15.284 | 0.961 | 0.951 | 0.007 |
INDUSION | 40.867 | 4.060 | 24.698 | 2.753 | 0.197 | 0.020 | 15.951 | 0.932 | 0.917 | 0.020 |
MTF-GLP | 39.435 | 3.128 | 23.585 | 2.266 | 0.190 | 0.015 | 16.243 | 0.726 | 0.945 | 0.006 |
MTF-GLP-HPM | 44.432 | 4.259 | 29.617 | 1.790 | 0.214 | 0.022 | 15.222 | 0.913 | 0.951 | 0.007 |
MTF-GLP-HPM_PP | 42.047 | 2.671 | 39.971 | 25.048 | 0.202 | 0.014 | 15.675 | 0.584 | 0.950 | 0.006 |
MTF-GLP-ECB | 43.876 | 3.439 | 33.677 | 2.671 | 0.211 | 0.018 | 15.314 | 0.699 | 0.931 | 0.009 |
MTF-GLP-CBD | 30.612 | 4.561 | 18.023 | 2.340 | 0.147 | 0.021 | 18.503 | 1.231 | 0.959 | 0.008 |
Algorithm | RMSE | ERGAS | SAM | PSNR | UQI | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
PCA | 51.432 | 23.291 | 22.231 | 11.541 | 0.424 | 0.143 | 13.692 | 5.176 | 0.751 | 0.117 |
IHS | 41.121 | 16.668 | 18.692 | 10.303 | 0.329 | 0.048 | 15.152 | 3.569 | 0.783 | 0.105 |
BDSD | 34.386 | 18.594 | 17.346 | 12.541 | 0.300 | 0.390 | 17.486 | 6.454 | 0.765 | 0.264 |
GS | 38.844 | 16.334 | 17.767 | 10.694 | 0.311 | 0.065 | 15.756 | 4.101 | 0.800 | 0.109 |
PRACS | 23.521 | 17.460 | 11.548 | 12.030 | 0.085 | 0.048 | 21.132 | 4.960 | 0.918 | 0.131 |
HPF | 23.769 | 17.956 | 11.491 | 12.244 | 0.062 | 0.004 | 22.499 | 6.956 | 0.917 | 0.137 |
SFIM | 24.098 | 17.842 | 11.582 | 12.136 | 0.073 | 0.020 | 22.307 | 7.105 | 0.921 | 0.134 |
INDUSION | 21.525 | 15.616 | 10.243 | 10.554 | 0.084 | 0.008 | 22.892 | 6.929 | 0.926 | 0.117 |
MTF-GLP | 24.326 | 17.910 | 11.718 | 12.228 | 0.073 | 0.005 | 22.074 | 6.728 | 0.916 | 0.137 |
MTF-GLP-HPM | 24.854 | 17.780 | 11.879 | 12.088 | 0.087 | 0.025 | 21.780 | 6.907 | 0.919 | 0.134 |
MTF-GLP-HPM_PP | 23.432 | 15.712 | 10.940 | 10.374 | 0.104 | 0.032 | 22.146 | 7.108 | 0.927 | 0.113 |
MTF-GLP-ECB | 24.489 | 17.868 | 11.733 | 12.143 | 0.076 | 0.014 | 21.870 | 6.508 | 0.911 | 0.134 |
Algorithm | RMSE | ERGAS | SAM | PSNR | UQI | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
PCA | 31.774 | 7.927 | 5.209 | 2.353 | 0.208 | 0.071 | 18.353 | 2.127 | 0.954 | 0.038 |
IHS | 39.167 | 4.122 | 5.837 | 0.851 | 0.250 | 0.028 | 16.322 | 0.939 | 0.940 | 0.015 |
BDSD | 7.400 | 1.933 | 1.084 | 0.504 | 0.048 | 0.017 | 31.014 | 2.107 | 0.995 | 0.007 |
GS | 32.743 | 4.492 | 4.974 | 1.326 | 0.211 | 0.038 | 17.915 | 1.242 | 0.954 | 0.022 |
PRACS | 25.352 | 9.352 | 2.885 | 1.413 | 0.159 | 0.058 | 20.934 | 4.354 | 0.972 | 0.014 |
HPF | 15.108 | 2.883 | 2.274 | 0.468 | 0.096 | 0.016 | 24.693 | 1.569 | 0.994 | 0.003 |
SFIM | 16.610 | 2.933 | 2.436 | 0.504 | 0.106 | 0.017 | 23.847 | 1.436 | 0.994 | 0.002 |
INDUSION | 16.848 | 3.282 | 2.565 | 0.521 | 0.106 | 0.018 | 23.754 | 1.609 | 0.991 | 0.004 |
MTF-GLP | 15.441 | 2.866 | 2.315 | 0.474 | 0.098 | 0.016 | 24.496 | 1.525 | 0.993 | 0.003 |
MTF-GLP-HPM | 16.892 | 2.885 | 2.471 | 0.509 | 0.107 | 0.017 | 23.693 | 1.388 | 0.994 | 0.002 |
MTF-GLP-HPM_PP | 17.210 | 2.770 | 2.540 | 0.517 | 0.109 | 0.017 | 23.519 | 1.322 | 0.993 | 0.003 |
MTF-GLP-ECB | 26.334 | 5.769 | 3.640 | 0.922 | 0.168 | 0.039 | 19.917 | 1.826 | 0.982 | 0.008 |
MTF-GLP-CBD | 8.567 | 3.627 | 1.283 | 0.573 | 0.054 | 0.021 | 30.125 | 3.244 | 0.997 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raimundo, J.; Lopez-Cuervo Medina, S.; Prieto, J.F.; Aguirre de Mata, J. Super Resolution Infrared Thermal Imaging Using Pansharpening Algorithms: Quantitative Assessment and Application to UAV Thermal Imaging. Sensors 2021, 21, 1265. https://doi.org/10.3390/s21041265
Raimundo J, Lopez-Cuervo Medina S, Prieto JF, Aguirre de Mata J. Super Resolution Infrared Thermal Imaging Using Pansharpening Algorithms: Quantitative Assessment and Application to UAV Thermal Imaging. Sensors. 2021; 21(4):1265. https://doi.org/10.3390/s21041265
Chicago/Turabian StyleRaimundo, Javier, Serafin Lopez-Cuervo Medina, Juan F. Prieto, and Julian Aguirre de Mata. 2021. "Super Resolution Infrared Thermal Imaging Using Pansharpening Algorithms: Quantitative Assessment and Application to UAV Thermal Imaging" Sensors 21, no. 4: 1265. https://doi.org/10.3390/s21041265
APA StyleRaimundo, J., Lopez-Cuervo Medina, S., Prieto, J. F., & Aguirre de Mata, J. (2021). Super Resolution Infrared Thermal Imaging Using Pansharpening Algorithms: Quantitative Assessment and Application to UAV Thermal Imaging. Sensors, 21(4), 1265. https://doi.org/10.3390/s21041265