Nano-Interstice Driven Powerless Blood Plasma Extraction in a Membrane Filter Integrated Microfluidic Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Sample Preparation
2.2. Membrane Filter Evaluation
3. Results and Discussions
3.1. Fabrication of Dual-Cover Microfluidic Device
3.2. Manufacturing of Membrane Filter Integrated Microfluidic Device
3.3. Membrane Filter Performance for Blood Plasma Separation
3.4. Plasma Extraction Performance in the Dual Covered Microfluidic Device
3.5. Comparison with Previous Extraction Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stern, E.; Vacic, A.; Rajan, N.K.; Criscione, J.M.; Park, J.; Ilic, B.R.; Mooney, D.J.; Reed, M.A.; Fahmy, T.M. Label-Free biomarker detection from whole blood. Nat. Nanotechnol. 2010, 5, 138–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mielczarek, W.S.; Obaje, E.A.; Bachmann, T.T.; Kersaudy-Kerhoas, M. Microfluidic blood plasma separation for medical diagnostics: Is it worth it? Lab Chip 2016, 16, 3441–3448. [Google Scholar] [CrossRef] [Green Version]
- Asirvatham, J.R.; Moses, V.; Bjornson, L. Errors in potassium measurement: A laboratory perspective for the clinician. N. Am. J. Med. Sci. 2013, 5, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.P.; Gupta, M.; Shevkoplyas, S.S.; Whitesides, G.M. Egg beater as centrifuge: Isolating human blood plasma from whole blood in resource-poor settings. Lab Chip 2008, 8, 2032–2037. [Google Scholar] [CrossRef]
- Liu, C.H.; Chen, C.A.; Chen, S.J.; Tsai, T.T.; Chu, C.C.; Chang, C.C.; Chen, C.F. Blood plasma separation using a fidget-spinner. Anal. Chem. 2018, 91, 1247–1253. [Google Scholar] [CrossRef]
- Kim, S.; Ma, Y.; Agrawal, P.; Attinger, D. How important is it to consider target properties and hematocrit in bloodstain pattern analysis? Forensic Sci. Int. 2016, 266, 178–184. [Google Scholar] [CrossRef]
- Jäggi, R.D.; Sandoz, R.; Effenhauser, C.S. Microfluidic depletion of red blood cells from whole blood in high-aspect-ratio microchannels. Microfluid. Nanofluidics. 2007, 3, 47–53. [Google Scholar] [CrossRef]
- Holmes, D.; Whyte, G.; Bailey, J.; Vergara-Irigaray, N.; Ekpenyong, A.; Guck, J.; Duke, T. Separation of blood cells with differing deformability using deterministic lateral displacement. Interface Focus 2014, 4, 20140011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tachi, T.; Kaji, N.; Tokeshi, M.; Baba, Y. Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system. Anal. Chem. 2009, 81, 3194–3198. [Google Scholar] [CrossRef] [PubMed]
- Haeberle, S.; Brenner, T.; Zengerle, R.; Ducrée, J. Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip 2006, 6, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, L.; Leung, K.M.; Yang, J. Out-Of-Plane microvalves for whole blood separation on lab-on-a-CD. J. Micromech. Microeng. 2010, 20, 10. [Google Scholar] [CrossRef]
- Lee, B.S.; Lee, J.-N.; Park, J.-M.; Lee, J.-G.; Kim, S.; Cho, Y.-K.; Ko, C. A fully automated immunoassay from whole blood on a disc. Lab Chip 2009, 9, 1548–1555. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Q.; Liu, M.; Yang, J. A lab-on-CD prototype for high-speed blood separation. J. Micromech. Microeng. 2008, 18, 12. [Google Scholar] [CrossRef]
- Nakashima, Y.; Hata, S.; Yasuda, T. Blood plasma separation and extraction from a minute amount of blood using dielectrophoretic and capillary forces. Sens. Actuators B Chem. 2010, 145, 561–569. [Google Scholar] [CrossRef]
- Jiang, H.; Weng, X.; Chon, C.H.; Wu, X.; Li, D. A microfluidic chip for blood plasma separation using electro-osmotic flow control. J. Micromech. Microeng. 2011, 21, 8. [Google Scholar] [CrossRef]
- Doria, A.; Patel, M.; Lee, A.P. Rapid blood plasma separation with air-liquid cavity acoustic transducers. In Proceedings of the 15th International Conference on Miniaturized Systems for Chemistry and Life Science 2011, MicroTAS 2011, Seattle, WA, USA, 2–6 October 2011; Volume 3, pp. 1882–1884. [Google Scholar]
- Thorslund, S.; Klett, O.; Nikolajeff, F.; Markides, K.; Bergquist, J. A hybrid poly(dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening. Biomed. Microdevices 2006, 8, 73–79. [Google Scholar] [CrossRef]
- Homsy, A.; van der Wal, P.D.; Doll, W.; Schaller, R.; Korsatko, S.; Ratzer, M.; Ellmerer, M.; Pieber, T.R.; Nicol, A.; de rooij, N.F. Development and validation of a low cost blood filtration element separating plasma from undiluted whole blood. Biomicrofluidics 2012, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, T.; Konishi, S. Microfluidic chip with serially connected filters for improvement of collection efficiency in blood plasma separation. Sens. Actuators B Chem. 2012, 161, 1176–1183. [Google Scholar] [CrossRef]
- Im, S.B.; Kim, S.C.; Shim, J.S. A smart pipette for equipment-free separation and delivery of plasma for on-site whole blood analysis. Anal. Bioanal. Chem. 2016, 408, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Zhang, S.; Ge, S.; Chen, M.; Zhang, J.; Zhang, J.; Xia, N. A low cost, membranes based serum separator modular. Biomicrofluidics 2018, 12, 2. [Google Scholar] [CrossRef]
- Shimizu, H.; Kumagai, M.; Mori, E.; Mawatari, K.; Kitamori, T. Whole blood analysis using microfluidic plasma separation and enzyme-linked immunosorbent assay devices. Anal. Methods 2016, 8, 7597–7602. [Google Scholar] [CrossRef]
- Wang, S.Q.; Sarenac, D.; Chen, M.H.; Huang, S.-H.; Giguel, F.F.; Kuritzkes, D.R.; Demirci, U. Simple filter microchip for rapid separation of plasma and viruses from whole blood. Int. J. Nanomed. 2012, 7, 5019–5028. [Google Scholar]
- Rodríguez-Villarreal, A.I.; Arundell, M.; Carmona, M.; Samitier, J. High flow rate microfluidic device for blood plasma separation using a range of temperatures. Lab. Chip 2010, 10, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Ündar, A.; Zahn, J.D. A microfluidic device for continuous, real time blood plasma separation. Lab Chip 2006, 6, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Forchelet, D.; Beguin, S.; Sajić, T.; Bararpour, N.; Pataky, Z.; Frias, M.; Grabherr, S.; Augsburger, M.; Liu, Y.; Charnley, M. Separation of blood microsamples by exploiting sedimentation at the microscale. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Chen, D.; Lin, S.; Wang, Z.; Cui, D. A robust and easily integrated plasma separation chip using gravitational sedimentation of blood cells filling-in high-aspect-ratio weir structure. RSC Adv. 2016, 6, 30722–30727. [Google Scholar] [CrossRef]
- Tripathi, S.; Varun Kumar, Y.V.B.; Prabhakar, A.; Joshi, S.S.; Agrawal, A. Passive blood plasma separation at the microscale: A review of design principles and microdevices. J. Micromech. Microeng. 2015, 25, 8. [Google Scholar] [CrossRef]
- Chung, S.; Yun, H.; Kamm, R.D. Nanointerstice-Driven microflow. Small 2009, 5, 609–613. [Google Scholar] [CrossRef]
- Kim, J.; Han, S.; Yoon, J.; Lee, E.; Lim, D.W.; Won, J.; Byun, J.-Y.; Chung, S. Nanointerstice-Driven microflow patterns in physical interrupts. Microfluid. Nanofluid. 2015, 18, 1433–1438. [Google Scholar] [CrossRef]
- Yoon, J.; Lee, E.; Kim, J.; Han, S.; Chung, S. Generation of digitized microfluidic filling flow by vent control. Biosens. Bioelectron. 2017, 92, 465–471. [Google Scholar] [CrossRef]
- Kim, J.; Hong, K.; Kim, H.; Seo, J.; Jeong, J.; Bae, P.K.; Shin, Y.B.; Lee, J.H.; Oh, H.J.; Chung, S. Microfluidic immunoassay for point-of-care testing using simple fluid vent control. Sens. Actuators B Chem. 2020, 316, 128094. [Google Scholar] [CrossRef]
- Zimmermann, M.; Schmid, H.; Hunziker, P.; Delamarche, E. Capillary pumps for autonomous capillary systems. Lab Chip 2007, 7, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, A.; Beaugrand, M.; Yafia, M.; Juncker, D. Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits. Lab Chip 2018, 18, 2323–2347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, H.; Hatsuda, R.; Miyamura, K.; Sugiyama, S. Plasma separation PMMA device driven by capillary force controlling surface wettability. Micro Nano Lett. 2012, 7, 64–67. [Google Scholar] [CrossRef]
- Kim, Y.C.; Kim, S.H.; Kim, D.; Park, S.J.; Park, J.K. Plasma extraction in a capillary-driven microfluidic device using surfactant-added poly(dimethylsiloxane). Sens. Actuators B Chem. 2010, 145, 861–868. [Google Scholar] [CrossRef]
- Khumpuang, S.; Tanaka, T.; Aita, F.; Meng, Z.; Ooe, K.; Ikeda, M.; Omori, Y.; Miyamura, K.; Yonezawa, H.; Matsumoto, K.; et al. Blood plasma separation device using capillary phenomenon. In Proceedings of the TRANSDUCERS EUROSENSORS ’07—4th International Conference Solid-State Sensors, Actuators and Microsystems, Lyon, France, 10–14 June 2007; pp. 1967–1970. [Google Scholar]
- Kim, D.; Yun, J.Y.; Park, S.J.; Lee, S.S. Effect of microstructure on blood cell clogging in blood separators based on capillary action. Microsyst. Technol. 2009, 15, 227–233. [Google Scholar] [CrossRef]
- Zhan, Y.H.; Kuo, J.N. Dimensions and capillary effects of microfluidic channel for blood plasma separation. In Proceedings of the 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2012, Kyoto, Japan, 5–8 March 2012; pp. 607–610. [Google Scholar]
- Li, C.; Liu, C.; Xu, Z.; Li, J. Extraction of plasma from whole blood using a deposited microbead plug (DMBP) in a capillary-driven microfluidic device. Biomed. Microdevices 2012, 14, 565–572. [Google Scholar] [CrossRef]
- Li, C.; Liu, C.; Xu, Z.; Li, J. A power-free deposited microbead plug-based microfluidic chip for whole-blood immunoassay. Microfluid. Nanofluid. 2012, 12, 829–834. [Google Scholar] [CrossRef]
- Shim, J.S.; Ahn, C.H. An on-chip whole blood/plasma separator using hetero-packed beads at the inlet of a microchannel. Lab Chip 2012, 12, 863–866. [Google Scholar] [CrossRef]
- Maria, M.S.; Rakesh, P.E.; Chandra, T.S.; Sen, A.K. Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Madadi, H.; Casals-Terré, J.; Mohammadi, M. Self-Driven filter-based blood plasma separator microfluidic chip for point-of-care testing. Biofabrication 2015, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Shabani, R.; Schumacher, M.; Kim, Y.-S.; Bae, Y.M.; Lee, K.-H.; Cho, H.J. On-Chip whole blood plasma separator based on microfiltration, sedimentation and wetting contrast. Microsyst. Technol. 2016, 22, 2077–2085. [Google Scholar] [CrossRef]
- VanDelinder, V.; Groisman, A. Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal. Chem. 2006, 78, 3765–3771. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Choi, S. Smart pipette and microfluidic pipette tip for blood plasma separation. Small 2016, 12, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.G.; Ji, H.M.; Zhang, G.J.; Agarwal, A.; Chen, Y. Back-To-Back integrated nanowire biosensor with microfiltration device for application to the cardiac biomarker detection from blood sample. In Proceedings of the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciiences, MicroTAS 2010, Groningen, The Netherlands, 3–7 October 2010; Volume 3, pp. 1427–1429. [Google Scholar]
- Kim, P.; Ong, E.H.; Li, K.H.H.; Yoon, Y.J.; Ng, S.H.G.; Puttachat, K. Low-Cost, disposable microfluidics device for blood plasma extraction using continuously alternating paramagnetic and diamagnetic capture modes. Biomicrofluidics 2016, 10, 2. [Google Scholar] [CrossRef]
- Jalal, U.M.; Jin, G.J.; Shim, J.S. Paper-Plastic hybrid microfluidic device for smartphone-based colorimetric analysis of urine. Anal. Chem. 2017, 89, 13160–13166. [Google Scholar] [CrossRef] [PubMed]
Filtration Method | Type | WB Volume (μL) | HCT (%) | Extraction | REF | ||
---|---|---|---|---|---|---|---|
Volume (μL) | Efficiency (%) | Time (s) | |||||
Centrifugal (Active) | External power | 5 | 44 | 2 | 40 | 20 | 10 |
100 | N.R | 58 | 58 | 480 | 4 | ||
9.4 | 48 | 4.89 | 52 | 200 | 11 | ||
150 | N.R | 50 | 33.33 | 180 | 12 | ||
0.5 | 6(D) | 0.108 | 21.6 | 1 | 13 | ||
Electrokinetic (Active) | External power | 5 | 10(D) | 0.3 | 6 | 600 | 14 |
0.5 | N.R | 0.13 | 26 | N.R | 15 | ||
16 | 40 | 3.8 | 23.75 | 180 | 16 | ||
Channel variation (Passive) | External power | 60 | N.R(D) | 10 | 16.67 | 360 | 48 |
475 | 20(D) | 38 | 8 | 3600 | 46 | ||
5 | 25(D) | 0.95 | 19 | 1800 | 25 | ||
1000 | 30(D) | 34.7 | 3.47 | 3600 | 24 | ||
1000 | 53 | 40 | 4 | 300 | 47 | ||
7.5 | N.R(D) | 1.645 | 21.93 | 300 | 49 | ||
32.5 | 50(D) | 10 | 30.77 | 1560 | 27 | ||
25 | N.R | 2 | 8 | 312.5 | 26 | ||
Powerless | 20 | N.R | 0.15 | 0.75 | 180 | 35 | |
10 | 50 | 0.02 | 0.2 | N.R | 36 | ||
20 | N.R | 1 | 5 | 120 | 37 | ||
0.2 | N.R | 0.008 | 4 | 2 | 38 | ||
2 | N.R | 0.02 | 1 | 25 | 39 | ||
10 | N.R | 0.19 | 1.88 | 600 | 40 | ||
5 | 43 | 0.35 | 7 | 110 | 41 | ||
10 | N.R | 0.51 | 5.17 | 490 | 42 | ||
10 | N.R | 2 | 20 | 900 | 43 | ||
5 | 45 | 0.1 | 2 | 300 | 44 | ||
15 | N.R | 0.16 | 1.07 | N.R | 45 | ||
Membrane filter (Passive) | External power | 100 | N.R | 12 | 12 | 420 | 18 |
50 | 11(D) | 12.8 | 25.6 | 20 | 19 | ||
50 | 43 | 4 | 8 | 20 | 19 | ||
100 | 45 | 30 | 30 | 420 | 20 | ||
300 | N.R | 60 | 20 | 300 | 21 | ||
50 | N.R | 6.9 | 13.8 | 600 | 22 | ||
Powerless | 225 | 43 | 20 | 8 | 600 | 17 | |
150 | N.R | 10 | 6.67 | 300 | PD-10 | ||
450 | N.R | 25 | 5.55 | 300 | PD-25 | ||
340 | N.R(D) | 23.5 | 6.9 | 1200 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Yoon, J.; Byun, J.-Y.; Kim, H.; Han, S.; Kim, J.; Lee, J.H.; Jo, H.-S.; Chung, S. Nano-Interstice Driven Powerless Blood Plasma Extraction in a Membrane Filter Integrated Microfluidic Device. Sensors 2021, 21, 1366. https://doi.org/10.3390/s21041366
Kim J, Yoon J, Byun J-Y, Kim H, Han S, Kim J, Lee JH, Jo H-S, Chung S. Nano-Interstice Driven Powerless Blood Plasma Extraction in a Membrane Filter Integrated Microfluidic Device. Sensors. 2021; 21(4):1366. https://doi.org/10.3390/s21041366
Chicago/Turabian StyleKim, Jaehoon, Junghyo Yoon, Jae-Yeong Byun, Hyunho Kim, Sewoon Han, Junghyun Kim, Jeong Hoon Lee, Han-Sang Jo, and Seok Chung. 2021. "Nano-Interstice Driven Powerless Blood Plasma Extraction in a Membrane Filter Integrated Microfluidic Device" Sensors 21, no. 4: 1366. https://doi.org/10.3390/s21041366