The Validity of MotionSense HRV in Estimating Sedentary Behavior and Physical Activity under Free-Living and Simulated Activity Settings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Instruments
2.3.1. MotionSense HRV
2.3.2. ActiGraph GT9X Accelerometer
2.3.3. Indirect Calorimetry
2.4. Procedures
2.5. Data Processing
2.5.1. Activity Monitors
2.5.2. Indirect Calorimetry
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. mHealth: New Horizons for Health through Mobile Technologies; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Kotz, D.; Gunter, C.A.; Kumar, S.; Weiner, J.P. Privacy and security in mobile health: A research agenda. Computer 2016, 49, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Nilsen, W.; Pavel, M.; Srivastava, M. Mobile health: Revolutionizing healthcare through transdisciplinary research. Computer 2013, 46, 28–35. [Google Scholar] [CrossRef]
- Martin, C.K.; Gilmore, L.A.; Apolzan, J.W.; Myers, C.A.; Thomas, D.M.; Redman, L.M. Smartloss: A personalized mobile health intervention for weight management and health promotion. JMIR mHealth uHealth 2016, 4, e18. [Google Scholar] [CrossRef]
- Kumar, S.; Abowd, G.; Abraham, W.T.; Al’Absi, M.; Chau, D.H.; Ertin, E.; Estrin, D.; Ganesan, D.; Hnat, T.; Hossain, S.M.; et al. Center of excellence for mobile sensor data-to-knowledge (MD2K). IEEE Pervasive Comput. 2017, 16, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Abowd, G.D.; Abraham, W.T.; Al’Absi, M.; Beck, J.G.; Chau, D.H.; Condie, T.; Conroy, D.E.; Ertin, E.; Estrin, D.; et al. Center of excellence for mobile sensor data-to-knowledge (MD2K). J. Am. Med. Inform. Assoc. 2015, 22, 1137–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razzak, M.I.; Imran, M.; Xu, G. Big data analytics for preventive medicine. Neural Comput. Appl. 2019, 32, 4417–4451. [Google Scholar] [CrossRef] [PubMed]
- Saleheen, N.; Ali, A.A.; Hossain, S.M.; Sarker, H.; Chatterjee, S.; Marlin, B.; Ertin, E.; Al’Absi, M.; Kumar, S. puffMarker: A multi-sensor approach for pinpointing the timing of first lapse in smoking cessation. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 9–11 September 2015. [Google Scholar]
- Ertin, E.; Stohs, N.; Kumar, S.; Raij, A.; al’Absi, M.; Shah, A. AutoSense: Unobtrusively wearable sensor suite for inferring the onset, causality, and consequences of stress in the field. In Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, Seattle, WA, USA, 1–4 November 2011. [Google Scholar]
- Center of Excellence for Mobile Sensor Data-to-Knowledge. AutoSense. Available online: https://md2k.org/documentation/data_dictionary/raw_streams/autosense.html (accessed on 12 September 2019).
- Center of Excellence for Mobile Sensor Data-to-Knowledge. MotionSense. Available online: https://md2k.org/documentation/data_dictionary/raw_streams/motionsense.html (accessed on 12 September 2019).
- Rhudy, M.B.; Dreisbach, S.B.; Moran, M.D.; Ruggiero, M.J.; Veerabhadrappa, P. Cut points of the Actigraph GT9X for moderate and vigorous intensity physical activity at four different wear locations. J. Sports Sci. 2020, 38, 503–510. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES): Physical Activity Monitor (PAM) Procedures Manual; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention: Hyattsville, MD, USA, 2014.
- Center of Excellence for Mobile Sensor Data-to-Knowledge. MotionSense HRV. Available online: https://md2k.org/documentation/data_dictionary/raw_streams/motionsensehrv.html (accessed on 12 September 2019).
- Holtyn, A.F.; Bosworth, E.; Marsch, L.A.; McLeman, B.; Meier, A.; Saunders, E.C.; Ertin, E.; Ullah, A.; Samiei, S.A.; Hossain, M.; et al. Towards detecting cocaine use using smartwatches in the NIDA clinical trials network: Design, rationale, and methodology. Contemp. Clin. Trials Commun. 2019, 15, 100392. [Google Scholar] [CrossRef]
- Liao, P.; Dempsey, W.; Sarker, H.; Hossain, S.M.; Al’Absi, M.; Klasnja, P.; Murphy, S. Just-in-time but not too much: Determining treatment timing in mobile health. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 179. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.M.; Hnat, T.; Saleheen, N.; Nasrin, N.J.; Noor, J.; Ho, B.-J.; Condie, T.; Srivastava, M.; Kumar, S. mCerebrum: A mobile sensing software platform for development and validation of digital biomarkers and interventions. In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, Delft, The Netherlands, 5–8 November 2017. [Google Scholar]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Adams, S.A.; Matthews, C.E.; Ebbeling, C.B.; Moore, C.G.; Cunningham, J.E.; Fulton, J.; Hebert, J.R. The effect of social desirability and social approval on self-reports of physical activity. Am. J. Epidemiol. 2005, 161, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Mathie, M.J.; Coster, A.C.F.; Lovell, N.H.; Celler, B.G. Accelerometry: Providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol. Meas. 2004, 25, R1–R20. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-C.; Hsu, Y.-L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010, 10, 7772–7788. [Google Scholar] [CrossRef]
- Bacong, A.M.; Holub, C.; Porotesano, L. Comparing obesity-related health disparities among native Hawaiians/Pacific islanders, Asians, and whites in California: Reinforcing the need for data disaggregation and operationalization. Hawaii J. Med. Public Health 2016, 75, 337–344. [Google Scholar]
- Madan, A.; Archambeau, O.G.; Milsom, V.A.; Goldman, R.L.; Borckardt, J.J.; Grubaugh, A.L.; Tuerk, P.W.; Frueh, B.C. More than black and white: Differences in predictors of obesity among native Hawaiian/Pacific islanders and European Americans. Obesity 2012, 20, 1325–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mau, M.K.; Sinclair, K.; Saito, E.P.; Baumhofer, K.N.; Kaholokula, J.K. Cardiometabolic health disparities in native Hawaiians and other Pacific islanders. Epidemiol. Rev. 2009, 31, 113–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, B.A.; Chu, K.C.; Hankey, B.F.; Ries, L.A.G. Cancer incidence and mortality patterns among specific Asian and Pacific islander populations in the U.S. Cancer Causes Control 2007, 19, 227–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hovsepian, K.; al’Absi, M.; Ertin, E.; Kamarck, T.; Nakajima, M.; Kumar, S. cStress: Towards a gold standard for continuous stress assessment in the mobile environment. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 9–11 September 2015. [Google Scholar]
- Hibbing, P.R.; Lamunion, S.R.; Kaplan, A.S.; Crouter, S.E. Estimating energy expenditure with ActiGraph GT9X inertial measurement unit. Med. Sci. Sports Exerc. 2018, 50, 1093–1102. [Google Scholar] [CrossRef]
- Shwetar, Y.J.; Veerubhotla, A.L.; Huang, Z.; Ding, D. Comparative validity of energy expenditure prediction algorithms using wearable devices for people with spinal cord injury. Spinal Cord 2020, 58, 821–830. [Google Scholar] [CrossRef]
- Fraser, S.; Ciptaningtyas, R.; Claes, J.; Cornelissen, V.; McDermott, C.; Moyna, N.; Pattyn, N.; Cornelis, N.; Gallagher, A.; McCormack, C.; et al. Feasibility, acceptability, and clinical effectiveness of a technology-enabled cardiac rehabilitation platform (physical activity toward health-I): Randomized controlled trial. J. Med. Internet Res. 2019, 22, e14221. [Google Scholar] [CrossRef]
- Wennman, H.; Pietilä, A.; Rissanen, H.; Valkeinen, H.; Partonen, T.; Mäki-Opas, T.; Borodulin, K. Gender, age and socioeconomic variation in 24-hour physical activity by wrist-worn accelerometers: The FinHealth 2017 survey. Sci. Rep. 2019, 9, 6534. [Google Scholar] [CrossRef] [Green Version]
- Valkenet, K.; Veenhof, C. Validity of three accelerometers to investigate lying, sitting, standing and walking. PLoS ONE 2019, 14, e0217545. [Google Scholar] [CrossRef]
- Ho, C.-S.; Chang, C.-H.; Lin, K.-C.; Huang, C.-C.; Hsu, Y.-J. Correction of estimation bias of predictive equations of energy expenditure based on wrist/waist-mounted accelerometers. PeerJ 2019, 7, e7973. [Google Scholar] [CrossRef]
- Montoye, A.H.K.; Conger, S.A.; Connolly, C.P.; Imboden, M.T.; Nelson, M.B.; Bock, J.M.; Kaminsky, L.A. Validation of accelerometer-based energy expenditure prediction models in structured and simulated free-living settings. Meas. Phys. Educ. Exerc. Sci. 2017, 21, 223–234. [Google Scholar] [CrossRef]
- Arguello, D.; Andersen, K.; Morton, A.; Freedson, P.S.; Intille, S.S.; John, D. Validity of proximity sensor-based wear-time detection using the ActiGraph GT9X. J. Sports Sci. 2017, 36, 1502–1507. [Google Scholar] [CrossRef]
- Aadland, E.; Ylvisåker, E. Reliability of the Actigraph GT3X+ accelerometer in adults under free-living conditions. PLoS ONE 2015, 10, e0134606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Lochbaum, M. Comparison of polar active watch and waist- and wrist-worn ActiGraph accelerometers for measuring children’s physical activity levels during unstructured afterschool programs. Int. J. Environ. Res. Public Health 2018, 15, 2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Schumann, M.; Le, S.; Cheng, S. Reliability and validity of a new accelerometer-based device for detecting physical activities and energy expenditure. PeerJ 2018, 6, e5775. [Google Scholar] [CrossRef]
- Mtaweh, H.; Tuira, L.; Floh, A.A.; Parshuram, C.S. Indirect calorimetry: History, technology, and application. Front. Pediatr. 2018, 6, 257. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; Martindale, R.G.; Kiraly, L. The use of indirect calorimetry in the intensive care unit. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 202–208. [Google Scholar] [CrossRef]
- Lev, S.; Cohen, J.; Singer, P. Indirect calorimetry measurements in the ventilated critically ill patient: Facts and controversies—The heat is on. Crit Care Clin. 2010, 26, e1–e9. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Crouter, S.E.S.; Dixon, P.M.P.; Gaesser, G.A.G.; Welk, G.J.G.; Lee, J.-M. Comparisons of prediction equations for estimating energy expenditure in youth. J. Sci. Med. Sport 2016, 19, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Crouter, S.E.; LaMunion, S.R.; Hibbing, P.R.; Kaplan, A.S.; Bassett, D.R., Jr. Accuracy of the Cosmed K5 portable calorimeter. PLoS ONE 2019, 14, e0226290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Suarez, I.; Martin-Rincon, M.; Gonzalez-Henriquez, J.J.; Fezzardi, C.; Perez-Regalado, S.; Galvan-Alvarez, V.; Juan-Habib, J.W.; Morales-Almo, D.; Calbet, J.A.L. Accuracy and precision of the COSMED K5 portable analyser. Front. Physiol. 2018, 9, 1764. [Google Scholar] [CrossRef]
- Guidetti, L.; Meucci, M.; Bolletta, F.; Emerenziani, G.P.; Gallotta, M.C.; Baldari, C. Validity, reliability and minimum detectable change of COSMED K5 portable gas exchange system in breath-by-breath mode. PLoS ONE 2018, 13, e0209925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, R.K.; Pooni, R.; Zaharieva, D.P.; Senf, B.; El Youssef, J.; Dassau, E.; Doyle, F.J., III; Clements, M.A.; Rickels, M.R.; Patton, S.R. Accuracy of wrist-worn activity monitors during common daily physical activities and types of structured exercise: Evaluation study. JMIR mHealth uHealth 2018, 6, e10338. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 compendium of physical activities. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hees, V. Accelerometer Data Processing with GGIR. Available online: https://cran.r-project.org/web/packages/GGIR/vignettes/GGIR.html (accessed on 22 November 2020).
- Hildebrand, M.; Hansen, B.H.; Van Hees, V.T.; Ekelund, U. Evaluation of raw acceleration sedentary thresholds in children and adults. Scand. J. Med. Sci. Sports 2016, 27, 1814–1823. [Google Scholar] [CrossRef]
- Van Hees, V.T.; Gorzelniak, L.; Dean Leon, E.C.; Eder, M.; Pias, M.; Teherian, S.; Ekelund, U.; Renström, F.; Franks, P.W.; Horsch, A.; et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE 2013, 8, e61691. [Google Scholar] [CrossRef] [Green Version]
- Hildebrand, M.; Van Hees, V.T.; Hansen, B.H.; Ekelund, U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef]
- Choi, L.; Liu, Z.; Matthews, C.E.; Buchowski, M.S. Validation of accelerometer wear and nonwear time classification algorithm. Med. Sci. Sports Exerc. 2011, 43, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Dixon, P.M.; Saint-Maurice, P.F.; Kim, Y.; Hibbing, P.; Bai, Y.; Welk, G.J. A primer on the use of equivalence testing for evaluating measurement agreement. Med. Sci. Sports Exerc. 2018, 50, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Lyden, K.; Kozey, S.L.; Staudenmeyer, J.W.; Freedson, P.S. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations. Eur. J. Appl. Physiol. 2011, 111, 187–201. [Google Scholar] [CrossRef]
- Plasqui, G.; Bonomi, A.G.; Westerterp, K.R. Daily physical activity assessment with accelerometers: New insights and validation studies. Obes. Rev. 2013, 14, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Redenius, N.; Kim, Y.; Byun, W. Concurrent validity of the Fitbit for assessing sedentary behavior and moderate-to-vigorous physical activity. BMC Med. Res. Methodol. 2019, 19, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, W.; Kim, Y.; Brusseau, T.A. The use of a fitbit device for assessing physical activity and sedentary behavior in preschoolers. J. Pediatr. 2018, 199, 35–40. [Google Scholar] [CrossRef]
- Alharbi, M.; Bauman, A.; Neubeck, L.; Gallagher, R. Validation of Fitbit-Flex as a measure of free-living physical activity in a community-based phase III cardiac rehabilitation population. Eur. J. Prev. Cardiol. 2016, 23, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Staudenmayer, J.; He, S.; Hickey, A.; Sasaki, J.E.; Freedson, P.S. Methods to estimate aspects of physical activity and sedentary behavior from high-frequency wrist accelerometer measurements. J. Appl. Physiol. 2015, 119, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Cleland, I.; Kikhia, B.; Nugent, C.; Boytsov, A.; Hallberg, J.; Synnes, K.; McClean, S.; Finlay, D. Optimal placement of accelerometers for the detection of everyday activities. Sensors 2013, 13, 9183–9200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokhlespour Esfahani, M.; Nussbaum, M. Preferred placement and usability of a smart textile system vs. inertial measurement units for activity monitoring. Sensors 2018, 18, 2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boerema, S.T.; Van Velsen, L.S.; Schaake, L.; Tönis, T.M.; Hermens, H.J. Optimal sensor placement for measuring physical activity with a 3D accelerometer. Sensors 2014, 14, 3188–3206. [Google Scholar] [CrossRef] [Green Version]
- Rowlands, A.V.; Yates, T.; Davies, M.; Khunti, K.; Edwardson, C.L. Raw accelerometer data analysis with GGIR R-package: Does accelerometer brand matter? Med. Sci. Sports Exerc. 2016, 48, 1935–1941. [Google Scholar] [CrossRef] [Green Version]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Nyström, C.D.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Welk, G.J.; Bai, Y.; Lee, J.-M.; Godino, J.; Saint-Maurice, P.F.; Carr, L. Standardizing analytic methods and reporting in activity monitor validation studies. Med. Sci. Sports Exerc. 2019, 51, 1767–1780. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Welk, G.J.; Nam, Y.H.; Lee, J.A.; Lee, J.-M.; Kim, Y.; Meier, N.F.; Dixon, P.M. Comparison of consumer and research monitors under semistructured settings. Med. Sci. Sports Exerc. 2016, 48, 151–158. [Google Scholar] [CrossRef]
- Lakens, D.D. Equivalence tests. Soc. Psychol. Pers. Sci. 2017, 8, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the 2011 IEEE 12th International Conference on Rehabilitation Robotics, IEEE, Zurich, Switzerland, 29 June–1 July 2011. [Google Scholar] [CrossRef]
- Burns, A.; Greene, B.R.; McGrath, M.J.; O’Shea, T.; Kuris, B.; Ayer, S.M.; Stroiescu, F.; Cionca, V. SHIMMER™—A wireless sensor platform for noninvasive biomedical research. IEEE Sens. J. 2010, 10, 1527–1534. [Google Scholar] [CrossRef]
- Ndahimana, D.; Kim, E.-K. Measurement methods for physical activity and energy expenditure: A review. Clin. Nutr. Res. 2017, 6, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Godino, J.G.; Wing, D.; De Zambotti, M.; Baker, F.C.; Bagot, K.; Inkelis, S.; Pautz, C.; Higgins, M.; Nichols, J.; Brumback, T.; et al. Performance of a commercial multi-sensor wearable (Fitbit Charge HR) in measuring physical activity and sleep in healthy children. PLoS ONE 2020, 15, e0237719. [Google Scholar] [CrossRef]
- Brage, S.; Westgate, K.L.; Franks, P.W.; Stegle, O.; Wright, A.; Ekelund, U.M.; Wareham, N.J. Estimation of free-living energy expenditure by heart rate and movement sensing: A doubly-labelled water study. PLoS ONE 2015, 10, e0137206. [Google Scholar] [CrossRef] [Green Version]
- Reis, V.M.; Vianna, J.M.; Barbosa, T.M.; Garrido, N.; Alves, J.V.; Carneiro, A.L.; Aidar, F.J.; Novaes, J. Are wearable heart rate measurements accurate to estimate aerobic energy cost during low-intensity resistance exercise? PLoS ONE 2019, 14, e0221284. [Google Scholar] [CrossRef]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Mâsse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef]
- Rowlands, A.V.; Cliff, D.P.; Fairclough, S.J.; Boddy, L.M.; Olds, T.S.; Parfitt, G.; Noonan, R.J.; Downs, S.J.; Knowles, Z.R.; Beets, M.W. Moving forward with backward compatibility: Translating wrist accelerometer data. Med. Sci. Sports Exerc. 2016, 48, 2142–2149. [Google Scholar] [CrossRef] [Green Version]
- Wolff-Hughes, D.L.; McClain, J.J.; Dodd, K.W.; Berrigan, D.; Troiano, R.P. Number of accelerometer monitoring days needed for stable group-level estimates of activity. Physiol. Meas. 2016, 37, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Buchan, D.S.; McSeveney, F.; McLellan, G. A comparison of physical activity from Actigraph GT3X+ accelerometers worn on the dominant and non-dominant wrist. Clin. Physiol. Funct. Imaging 2018, 39, 51–56. [Google Scholar] [CrossRef] [PubMed]
Intensity Type | Activity | Duration |
---|---|---|
Sedentary Behavior | Resting in the supine position | 5 min |
Watching TV in the sitting position | 5 min | |
Reading books in the sitting position | 5 min | |
Typing computer in the sitting position | 5 min | |
Transit #1 | 1 min | |
Light Physical Activity | Fidgeting in the standing position | 5 min |
Walking at a casual pace (1–1.5 mph) | 5 min | |
Housekeeping/work (i.e., setting the table) | 5 min | |
Exploring/sorting (i.e., stacking light boxes) | 5 min | |
Transit #2 | 1 min | |
Moderate-to-Vigorous Physical Activity | Walking briskly (2.5–3.0 mph) | 5 min |
Running at a moderate pace (3.5–4.0 mph) | 5 min | |
Running at a fast pace (4.5–5.0 mph) | 5 min | |
Full body free play (e.g., throwing ball, basketball, soccer, tennis, jumping jack) | 5 min |
All (N = 20) | Male (N = 8) | Female (N = 12) | p-Value * | |
---|---|---|---|---|
Age (years) | 32.5 ± 15.1 | 29.5 ± 13.1 | 34.5 ± 16.5 | 0.48 |
Height (cm) | 172.0 ± 6.9 | 178.8 ± 2.5 | 167.5 ± 4.6 | <0.01 ** |
Weight (kg) | 90.1 ± 12.5 | 96.1 ± 13.0 | 86.1 ± 10.9 | 0.08 |
Waist (cm) | 97.7 ± 10.9 | 98.1 ± 13.5 | 97.5 ± 9.4 | 0.91 |
BMI (kg/m2) | 30.5 ± 4.0 | 30.1 ± 4.3 | 30.7 ± 4.0 | 0.74 |
Weight Status (%) | ||||
Normal | 15% | 12.5% | 17% | 0.78 |
Overweight/obese | 75% | 87.5% | 83% | 0.78 |
Wear time (min/day) | 297.7 ± 119.7 | 318.3 ± 158.9 | 283.9 ± 90.3 | 0.54 |
Intensity | GT9X (SD) | MotionSense HRV (SD) | Mean diff. (SE) | MAPE (%) |
---|---|---|---|---|
SED | 237.1 min (97.8) | 242.8 min (99.5) | −5.7 min (1.7) | 2.4% |
LPA | 38.6 min (15.8) | 35.3 min (14.8) | 3.3 min (1.1) | 8.7% |
MVPA | 26.4 min (16.2) | 24.0 min (15.1) | 2.4 min (0.8) | 9.1% |
TPA | 65.0 min (29.3) | 59.2 min (27.2) | 5.7 min (1.7) | 8.8% |
Intensity | Cosmed K5 (SD) | MotionSense HRV (SD) | Mean diff. (SE) | MAPE (%) |
---|---|---|---|---|
SED | 21.6 min (4.2) | 25.7 min (2.6) | −4.1 min (0.9) | 18.9% |
LPA | 15.3 min (2.7) | 8.5 min (1.6) | 6.8 min (0.8) | 44.2% |
MVPA | 17.5 min (3.8) | 19.6 min (2.4) | −2.1 min (0.9) | 12.3% |
TPA | 32.8 min (3.9) | 28.2 min (2.6) | 4.6 min (0.9) | 14.1% |
Intensity | GT9X (SE) | MotionSense HRV (SE) | 90% CI of MotionSense HRV | EZ of GT9X | EZ (%) |
---|---|---|---|---|---|
SED | 237.1 min (4.2) | 242.8 min (22.4) | 198.18 to 275.7 min/d | 197.98 to 276.2 min/d | 16.5% |
LPA | 38.6 min (3.6) | 35.3 min (3.2) | 29.51 to 40.7 min/d | 29.49 to 47.71 min/d | 23.6% |
MVPA | 26.4 min (3.7) | 24.0 min (3.3) | 18.74 to 30.28 min/d | 18.72 to 34.01 min/d | 29.0% |
TPA | 65.0 min (6.7) | 59.2 min (5.9) | 49.35 to 69.87 min/d | 49.31 to 80.62 min/d | 24.1% |
Intensity | Cosmed K5 (SE) | MotionSense HRV (SE) | 90% CI of MotionSense HRV | EZ of Cosmed K5 | EZ (%) |
---|---|---|---|---|---|
SED | 21.6 min (4.2) | 25.7 min (2.6) | 24.64 to 26.85 min/d | 16.43 to 26.86 min/d | 24.1% |
LPA | 15.3 min (2.7) | 8.5 min (1.6) | 7.88 to 9.2 min/d | 7.86 to 22.73 min/d | 48.6% |
MVPA | 17.5 min (3.8) | 19.6 min (2.4) | 18.60 to 20.63 min/d | 14.29 to 20.65 min/d | 18.2% |
TPA | 32.8 min (3.9) | 28.2 min (2.6) | 27.06 to 29.25 min/d | 27.03 to 38.5 min/d | 17.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Wan, N.; Burns, R.D.; Brusseau, T.A.; Kim, Y.; Kumar, S.; Ertin, E.; Wetter, D.W.; Lam, C.Y.; Wen, M.; et al. The Validity of MotionSense HRV in Estimating Sedentary Behavior and Physical Activity under Free-Living and Simulated Activity Settings. Sensors 2021, 21, 1411. https://doi.org/10.3390/s21041411
Kwon S, Wan N, Burns RD, Brusseau TA, Kim Y, Kumar S, Ertin E, Wetter DW, Lam CY, Wen M, et al. The Validity of MotionSense HRV in Estimating Sedentary Behavior and Physical Activity under Free-Living and Simulated Activity Settings. Sensors. 2021; 21(4):1411. https://doi.org/10.3390/s21041411
Chicago/Turabian StyleKwon, Sunku, Neng Wan, Ryan D. Burns, Timothy A. Brusseau, Youngwon Kim, Santosh Kumar, Emre Ertin, David W. Wetter, Cho Y. Lam, Ming Wen, and et al. 2021. "The Validity of MotionSense HRV in Estimating Sedentary Behavior and Physical Activity under Free-Living and Simulated Activity Settings" Sensors 21, no. 4: 1411. https://doi.org/10.3390/s21041411
APA StyleKwon, S., Wan, N., Burns, R. D., Brusseau, T. A., Kim, Y., Kumar, S., Ertin, E., Wetter, D. W., Lam, C. Y., Wen, M., & Byun, W. (2021). The Validity of MotionSense HRV in Estimating Sedentary Behavior and Physical Activity under Free-Living and Simulated Activity Settings. Sensors, 21(4), 1411. https://doi.org/10.3390/s21041411