Multiscale Analysis of Solar Loading Thermographic Signals for Wall Structure Inspection †
Abstract
:1. Introduction
2. Methodologies
2.1. Solar Loading Thermography
2.2. Thermogram Decomposition with MEEMD
- (a)
- “The number of extrema and the number of zero-crossings must either be equal or differ at most by one.”
- (b)
- “At any point, the mean value of the upper and lower envelopes defined by the local maxima and local minima is zero.”
- (1)
- Let .
- (2)
- Identify all the local extrema in .
- (3)
- Generate the upper envelope by connecting all the local maxima with a cubic spline.
- (4)
- Generate the lower envelope by connecting all the local minima with another cubic spline.
- (5)
- Calculate the mean of the two envelops and denote it as . The frequency of is lower than that of the original signal.
- (6)
- Subtract from to obtain an oscillatory signal .
- (7)
- Check if satisfies the requirements (a) and (b) for an IMF.
- (8)
- If the conditions of IMF are not satisfied, let and repeat the above steps.
- (9)
- Otherwise, an IMF is obtained as .
- (10)
- Update with the residue between the original signal and the sum of all obtained IMFs. Repeat the previous steps to find out all the IMFs.
- (11)
- Terminate the iterative procedure if the residue becomes a monotonic function.
2.3. PCA for Feature Extraction at Each Spatial Scale
3. Experimental Results
3.1. Solar Loading Thermography Experiment for Inspecting a Building Wall
3.2. Decomposition of Thermograms
3.3. Multiscale Data Processing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shepard, S.M. Introduction to active thermography for non-destructive evaluation. Anti-Corros. Methods Mater. 1997, 44, 236–239. [Google Scholar] [CrossRef]
- Ibarra-Castanedo, C.; Sfarra, S.; Klein, M.; Maldague, X. Solar loading thermography: Time-lapsed thermographic survey and advanced thermographic signal processing for the inspection of civil engineering and cultural heritage structures. Infrared Phys. Technol. 2007, 82, 56–74. [Google Scholar] [CrossRef]
- Nunak, T.; Rakrueangdet, K.; Nunak, N.; Suesut, T. Thermal image resolution on angular emissivity measurements using infrared thermography. In Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2015), Hong Kong, China, 18–20 March 2015; p. 1. [Google Scholar]
- Maldague, X.P.V. Theory and Practice of Infrared Technology for Nondestructive Testing; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Sfarra, S.; Cicone, A.; Yousefi, B.; Ibarra-Castanedo, C.; Perilli, S.; Maldague, X. Improving the detection of thermal bridges via on-site infrared thermography: The potentialities of innovative mathematical tools. Energy Build. 2019, 182, 159–171. [Google Scholar] [CrossRef]
- Favro, L.D.; Han, X. Thermal wave materials characterization and thermal wave imaging. In Sensing for Materials Characterization, Processing and Manufacturing; Birnbaum, G., Auld, B.A., Eds.; ASNT TONES: Columbus, OH, USA, 1998; pp. 399–415. [Google Scholar]
- Ibarra-Castanedo, C.; Khodayar, F.; Klein, M.; Sfarra, S.; Maldague, X.; Helal, H.; Tayoubi, M.; Marini, B.; Barré, J.C. Infrared vision for artwork and cultural heritage NDE studies: Principles and case studies. Insight 2017, 59, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Perilli, S.; Sfarra, S.; Guerrini, M.; Bisegna, F.; Ambrosini, D. The thermophysical behaviour of cork supports doped with an innovative thermal insulation and protetive coating: A numerical analysis based on in situ experimental data. Energy Buldings 2018, 159, 508–528. [Google Scholar] [CrossRef]
- Maldague, X.; Galmiche, F.; Ziadi, A. Advances in pulsed phase thermography. Infrared Phys. Technol. 2002, 43, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Shepard, S.M.; Lhota, J.; Rubadeux, B.; Wang, D.; Ahmed, T. Reconstruction and enhancement of active thermographic image sequences. Opt. Eng. 2003, 42, 1337–1342. [Google Scholar] [CrossRef]
- Madruga, F.J.; Ibarra-Castanedo, C.; Conde, O.M.; López-Higuera, J.M.; Maldague, X. Infrared thermography processing based on higher-order statistics. NDT E Int. 2010, 43, 661–666. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, K.; Yang, J.; Yao, Y. Spatial-neighborhood manifold learning for nondestructive testing of defects in polymer composites. IEEE Trans. Ind. Inform. 2020, 16, 4639–4649. [Google Scholar] [CrossRef]
- Wu, H.; Zheng, K.; Sfarra, S.; Liu, Y.; Yao, Y. Multiview learning for subsurface defect detection in composite products: A challenge on thermographic data analysis. IEEE Trans. Ind. Inform. 2020, 16, 5996–6003. [Google Scholar] [CrossRef]
- Yousefi, B.; Ibarra-Castanedo, C.; Maldague, X. Measuring heterogeneous thermal patterns in infrared-based diagnostic systems using sparse low-rank matrix approximation: Comparative study. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Liu, L.; Gao, B.; Wu, S.; Ahmed, J.; Woo, W.L.; Li, J.; Yu, Y. Structured iterative alternating sparse matrix decomposition for thermal imaging diagnostic system. Infrared Phys. Technol. 2020, 107, 103288. [Google Scholar] [CrossRef]
- Rajic, N. Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 2002, 58, 521–528. [Google Scholar] [CrossRef]
- Yousefi, B.; Sfarra, S.; Ibarra-Castanedo, C.; Maldague, X. Comparative analysis on thermal non-destructive testing imagery applying Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT). Infrared Phys. Technol. 2017, 85, 163–169. [Google Scholar] [CrossRef]
- Wu, J.; Sfarra, S.; Yao, Y. Sparse principal component thermography for subsurface defect detection in composite products. IEEE Trans. Ind. Inform. 2018, 14, 5594–5600. [Google Scholar] [CrossRef]
- Yousefi, B.; Sfarra, S.; Sarasini, F.; Ibarra-Castanedo, C.; Maldague, X. Low-rank sparse principal component thermography (sparse-PCT): Comparative assessment on detection of subsurface defects. Infrared Phys. Technol. 2019, 98, 278–284. [Google Scholar] [CrossRef]
- Jie, J.; Dai, S.; Hou, B.; Zhang, M.; Zhou, L. Defect detection in composite products based on sparse moving window principal component thermography. Adv. Polym. Technol. 2020, 2020, 4682689. [Google Scholar] [CrossRef]
- Liu, K.; Li, Y.; Yang, J.; Liu, Y.; Yao, Y. Generative principal component thermography for enhanced defect detection and analysis. IEEE Trans. Instrum. Meas. 2020, 69, 8261–8269. [Google Scholar]
- Ebrahimi, S.; Fleuret, J.; Klein, M.; Théroux, L.-D.; Georges, M.; Ibarra-Castanedo, C.; Maldague, X. Robust principal component analysis for defect detection in pulsed thermography. Sensors 2021. under review. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Yan, Z.; Wang, K.-H.; Yao, Y. Non-destructive testing of CFRP using pulsed thermography and multi-dimensional ensemble empirical mode decomposition. J. Taiwan Inst. Chem. Eng. 2016, 61, 54–63. [Google Scholar] [CrossRef]
- Yao, Y.; Sfarra, S.; Ibarra-Castanedo, C.; You, R.; Maldague, X. The multi-dimensional ensemble empirical mode decomposition (MEEMD): An advanced tool for thermographic diagnosis of mosaics. J. Therm. Anal. Calorim. 2017, 128, 1841–1858. [Google Scholar] [CrossRef]
- Tu, K.; Sfarra, S.; Ibarra-Castanedo, C.; Maldague, X. P.; Yao, Y. Multiscale Analysis of Solar loading Thermographic Data for the Inspection of Civil Engineering Structures. In Proceedings of the 15th Quantitative InfraRed Thermography Conference, Porto, Portugal, 21–30 September 2020. [Google Scholar]
- Li, Z.; Yao, W.; Lee, S.; Lee, C.; Yang, Z. Application of infrared thermography technique in building finish evaluation. J. Nondestruct. Eval. 2000, 19, 11–19. [Google Scholar] [CrossRef]
- Washer, G.; Fenwick, R.; Bolleni, N. Effects of solar loading on infrared imaging of subsurface features in concrete. J. Bridge Eng. 2010, 15, 384–390. [Google Scholar] [CrossRef]
- De Freitas, S.S.; De Freitas, V.P.; Barreira, E. Detection of facade plaster detachments using infrared thermography—A nondestructive technique. Constr. Build. Mater. 2014, 70, 80–87. [Google Scholar] [CrossRef]
- Worzewski, T.; Krankenhagen, R.; Doroshtnasir, M.; Röllig, M.; Maierhofer, C.; Steinfurth, H. Thermographic inspection of a wind turbine rotor blade segment utilizing natural conditions as excitation source, Part I: Solar excitation for detecting deep structures in GFRP. Infrared Phys. Technol. 2016, 76, 756–766. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Bloomfield, P. Fourier Analysis of Time Series: An Introduction; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Peng, S.; Hwang, W. EMD revisited: A new understanding of the envelope and resolving the mode-mixing problem in AM-FM signals. IEEE Trans. Signal Process. 2012, 60, 1075–1086. [Google Scholar]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2019, 1, 1–41. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E.; Chen, X. The multi-dimensional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal. 2009, 1, 339–372. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis, 2nd ed.; Springer series in statistics; Springer: New York, NY, USA, 2002. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, K.; Ibarra-Castanedo, C.; Sfarra, S.; Yao, Y.; Maldague, X.P.V. Multiscale Analysis of Solar Loading Thermographic Signals for Wall Structure Inspection. Sensors 2021, 21, 2806. https://doi.org/10.3390/s21082806
Tu K, Ibarra-Castanedo C, Sfarra S, Yao Y, Maldague XPV. Multiscale Analysis of Solar Loading Thermographic Signals for Wall Structure Inspection. Sensors. 2021; 21(8):2806. https://doi.org/10.3390/s21082806
Chicago/Turabian StyleTu, Katherine, Clemente Ibarra-Castanedo, Stefano Sfarra, Yuan Yao, and Xavier P. V. Maldague. 2021. "Multiscale Analysis of Solar Loading Thermographic Signals for Wall Structure Inspection" Sensors 21, no. 8: 2806. https://doi.org/10.3390/s21082806