Wildlife Monitoring on the Edge: A Performance Evaluation of Embedded Neural Networks on Microcontrollers for Animal Behavior Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wearable Data Acquisition Platform for Wildlife
2.2. Dataset
2.3. Neural Network Models
2.4. Full Integer Quantization
2.5. Integrated Development Environment
2.6. Cortex-M Microcontrollers
3. Results
3.1. Cross-Validation Results
3.2. Hardware Integration Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
ENN | Embedded Neural Network |
FIQ | Full Integer Quantization |
GPS | Global Positioning System |
HL | Hidden Layer |
IDE | Integrated Development Environment |
IMU | Inertial Measurement Unit |
NN | Neural Network |
TFL | TensorFlow Lite |
WSN | Wireless Sensor Network |
Appendix A
Dataset | No. HL | No. Neurons | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
10 | 20 | 30 | 50 | 100 | 200 | 300 | 500 | |||
Model | Accel | 1 | 73.13 ± 0.48 | 72.81 ± 1.11 | 73.57 ± 0.83 | 72.96 ± 1.29 | 72.49 ± 1.97 | 70.61 ± 3.02 | 70.43 ± 2.96 | 69.82 ± 3.61 |
2 | 72.93 ± 1.77 | 73.98 ± 0.37 | 74.53 ± 0.54 | 74.96 ± 0.61 | 84.01 ± 10.06 | 87.36 ± 8.57 | 82.89 ± 1.07 | 84.43 ± 1.64 | ||
3 | 73.99 ± 0.35 | 74.32 ± 0.41 | 75.07 ± 0.79 | 77.24 ± 1.59 | 87.67 ± 5.10 | 97.88 ± 0.63 | 97.34 ± 1.92 | 97.96 ± 1.42 | ||
Kalman | 1 | 73.59 ± 0.65 | 75.60 ± 3.34 | 80.35 ± 4.32 | 80.37 ± 3.73 | 83.76 ± 5.37 | 77.24 ± 5.65 | 74.76 ± 4.05 | 69.64 ± 3.50 | |
2 | 80.21 ± 1.92 | 84.18 ± 1.18 | 85.31 ± 1.84 | 88.60 ± 0.68 | 90.53 ± 0.50 | 90.73 ± 0.71 | 90.07 ± 0.44 | 89.11 ± 1.02 | ||
3 | 83.36 ± 0.66 | 85.40 ± 1.05 | 87.88 ± 0.64 | 90.91 ± 0.63 | 91.51 ± 0.60 | 91.81 ± 0.18 | 91.92 ± 0.45 | 91.55 ± 0.69 |
Accuracy per Fold (%) | Metrics (Mean) (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Data | HL | Neurons | 1 | 2 | 3 | 4 | 5 | Accuracy | Precision | Recall | F1-Score | Balanced Accuracy |
Accel. | 1 | 10 | 72.52 | 73.40 | 73.15 | 73.88 | 72.74 | 73.14 | 73.36 | 73.14 | 73.05 | 75.24 |
20 | 72.08 | 73.91 | 70.98 | 73.68 | 73.43 | 72.82 | 72.98 | 72.82 | 72.69 | 74.96 | ||
30 | 72.02 | 73.95 | 74.53 | 73.61 | 73.77 | 73.58 | 73.75 | 73.58 | 73.48 | 75.63 | ||
50 | 73.46 | 74.00 | 72.99 | 73.88 | 70.48 | 72.96 | 73.14 | 72.96 | 72.86 | 75.02 | ||
100 | 71.76 | 68.98 | 74.23 | 74.23 | 73.27 | 72.49 | 72.68 | 72.49 | 72.31 | 74.73 | ||
200 | 66.81 | 74.20 | 74.18 | 69.08 | 68.78 | 70.61 | 70.81 | 70.61 | 70.25 | 73.25 | ||
300 | 67.14 | 74.20 | 68.52 | 73.82 | 68.51 | 70.44 | 70.83 | 70.44 | 70.11 | 73.11 | ||
500 | 66.76 | 74.43 | 74.07 | 67.03 | 66.85 | 69.83 | 70.05 | 69.83 | 69.45 | 72.55 | ||
2 | 10 | 73.28 | 74.51 | 74.25 | 73.08 | 69.56 | 72.94 | 73.30 | 72.94 | 72.87 | 75.03 | |
20 | 74.31 | 74.34 | 74.20 | 73.61 | 73.45 | 73.98 | 74.28 | 73.98 | 73.96 | 75.90 | ||
30 | 74.39 | 75.03 | 75.13 | 73.61 | 74.53 | 74.54 | 74.83 | 74.54 | 74.52 | 76.41 | ||
50 | 74.89 | 75.01 | 75.93 | 73.98 | 75.02 | 74.97 | 75.20 | 74.97 | 74.93 | 76.81 | ||
100 | 96.18 | 76.48 | 76.64 | 74.35 | 96.43 | 84.01 | 84.05 | 84.01 | 83.99 | 85.02 | ||
200 | 80.28 | 98.34 | 80.42 | 80.42 | 97.38 | 87.37 | 87.37 | 87.37 | 87.35 | 88.11 | ||
300 | 83.08 | 83.71 | 82.45 | 81.08 | 84.17 | 82.90 | 82.91 | 82.90 | 82.88 | 83.76 | ||
500 | 82.32 | 87.02 | 83.78 | 83.55 | 85.51 | 84.44 | 84.46 | 84.44 | 84.43 | 85.51 | ||
3 | 10 | 73.51 | 74.39 | 74.12 | 73.65 | 74.30 | 73.99 | 74.34 | 73.99 | 73.97 | 75.94 | |
20 | 74.41 | 74.99 | 74.20 | 73.70 | 74.31 | 74.32 | 74.65 | 74.32 | 74.30 | 76.24 | ||
30 | 74.66 | 76.12 | 75.65 | 73.84 | 75.11 | 75.08 | 75.37 | 75.08 | 75.05 | 76.91 | ||
50 | 77.75 | 78.03 | 78.23 | 74.07 | 78.12 | 77.24 | 77.43 | 77.24 | 77.22 | 78.79 | ||
100 | 97.42 | 82.91 | 84.37 | 87.02 | 86.66 | 87.68 | 87.72 | 87.68 | 87.67 | 88.35 | ||
200 | 98.60 | 96.92 | 97.88 | 98.53 | 97.51 | 97.89 | 97.89 | 97.89 | 97.89 | 98.03 | ||
300 | 98.53 | 93.67 | 97.36 | 99.15 | 98.00 | 97.34 | 97.35 | 97.34 | 97.35 | 97.55 | ||
500 | 95.14 | 98.87 | 98.74 | 98.82 | 98.23 | 97.96 | 97.97 | 97.96 | 97.96 | 98.11 | ||
Kalman | 1 | 10 | 74.57 | 73.56 | 73.79 | 73.54 | 72.51 | 73.59 | 73.53 | 73.59 | 73.08 | 74.77 |
20 | 77.74 | 76.44 | 75.17 | 79.20 | 69.47 | 75.60 | 75.46 | 75.60 | 75.15 | 76.85 | ||
30 | 83.4 | 75.98 | 83.18 | 84.88 | 74.31 | 80.35 | 80.24 | 80.35 | 80.15 | 81.61 | ||
50 | 73.70 | 80.70 | 80.69 | 85.23 | 81.55 | 80.38 | 80.29 | 80.38 | 80.16 | 81.52 | ||
100 | 88.22 | 88.40 | 74.97 | 87.21 | 80.03 | 83.77 | 83.76 | 83.77 | 83.60 | 84.82 | ||
200 | 76.20 | 88.27 | 75.29 | 73.84 | 72.60 | 77.24 | 77.23 | 77.24 | 76.80 | 78.38 | ||
300 | 72.82 | 80.16 | 70.75 | 79.11 | 70.99 | 74.76 | 74.90 | 74.76 | 74.25 | 75.77 | ||
500 | 73.30 | 70.32 | 63.07 | 69.81 | 71.73 | 69.65 | 70.30 | 69.65 | 68.26 | 71.16 | ||
2 | 10 | 81.47 | 79.45 | 81.50 | 76.76 | 81.90 | 80.22 | 80.11 | 80.22 | 80.06 | 81.50 | |
20 | 84.83 | 85.44 | 82.56 | 82.95 | 85.14 | 84.18 | 84.12 | 84.18 | 84.10 | 85.34 | ||
30 | 82.88 | 88.06 | 83.76 | 86.40 | 85.48 | 85.32 | 85.28 | 85.32 | 85.23 | 86.37 | ||
50 | 89.35 | 87.97 | 88.50 | 87.76 | 89.42 | 88.60 | 88.60 | 88.60 | 88.56 | 89.43 | ||
100 | 90.19 | 91.51 | 90.43 | 90.47 | 90.09 | 90.54 | 90.53 | 90.54 | 90.50 | 91.28 | ||
200 | 91.14 | 90.98 | 90.66 | 89.41 | 91.49 | 90.74 | 90.72 | 90.74 | 90.70 | 91.47 | ||
300 | 90.26 | 89.37 | 89.97 | 90.73 | 90.02 | 90.07 | 90.07 | 90.07 | 90.03 | 90.83 | ||
500 | 88.26 | 89.76 | 87.57 | 89.65 | 90.31 | 89.11 | 89.09 | 89.11 | 89.06 | 89.89 | ||
3 | 10 | 84.08 | 83.85 | 83.07 | 83.60 | 82.22 | 83.37 | 83.34 | 83.37 | 83.27 | 84.53 | |
20 | 84.54 | 87.07 | 84.05 | 85.87 | 85.48 | 85.40 | 85.40 | 85.40 | 85.32 | 86.55 | ||
30 | 87.25 | 87.94 | 87.23 | 87.99 | 89.00 | 87.88 | 87.89 | 87.88 | 87.82 | 88.84 | ||
50 | 91.83 | 91.10 | 90.08 | 91.26 | 90.32 | 90.92 | 90.92 | 90.92 | 90.88 | 91.70 | ||
100 | 91.71 | 91.19 | 90.71 | 91.42 | 92.53 | 91.51 | 91.52 | 91.51 | 91.48 | 92.20 | ||
200 | 91.53 | 91.90 | 91.76 | 92.09 | 91.81 | 91.82 | 91.83 | 91.82 | 91.79 | 92.50 | ||
300 | 92.57 | 91.19 | 92.16 | 91.79 | 91.90 | 91.92 | 91.93 | 91.92 | 91.90 | 92.56 | ||
500 | 90.93 | 91.37 | 92.24 | 90.73 | 92.48 | 91.55 | 91.54 | 91.55 | 91.52 | 92.26 |
Microcontroller | Clock Freq. (MHz) | Data | HL | Model | Flash (KB) | RAM (KB) | Complexity (ops) | Current (mA) | Power (mW) | Energy (mJ) | Processing time (ms) | CPU cycles | cycles/MAC | Acc (%) | l2r | X-Cross acc (%) | Mops/s/Watt |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
STM32L475 | 80 | Accel | 1 | TFLite | 1.14 | 0.152344 | 630 | 10.7 | 32.1 | 5.9385 | 0.185 | 14794 | 23.48 | 74.53 | 0.732473 | 100 | 106.087 |
Quant. | 0.402344 | 0.330078 | 351 | 10.7 | 32.1 | 11.2671 | 0.351 | 28084 | 80.01 | 67.00 | 0.808616 | 89.19 | 31.152 | ||||
2 | TFLite | 164.14 | 1.59 | 45690 | 10.7 | 32.1 | 185.7627 | 5.787 | 462965 | 10.13 | 98.34 | 0.172436 | 100 | 245.958 | |||
Quant. | 42.62 | 2.15 | 42481 | 10.7 | 32.1 | 145.2525 | 4.525 | 361988 | 8.52 | 79.25 | 0.624254 | 86.03 | 292.463 | ||||
3 | TFLite | - | - | - | - | - | - | - | - | - | - | - | - | - | |||
Quant. | 500.04 | 5.38 | 507591 | 10.7 | 32.1 | 1125.8112 | 35.072 | 2805759 | 5.53 | 80.47 | 0.60562 | 88.15 | 450.858 | ||||
Kalman | 1 | TFLite | 3.6 | 0.425781 | 1890 | 10.7 | 32.1 | 14.6376 | 0.456 | 36442 | 19.28 | 87.21 | 0.478239 | 100 | 129.119 | ||
Quant. | 1.21 | 1.08 | 981 | 10.7 | 32.1 | 23.5293 | 0.733 | 58680 | 59.82 | 68.57 | 0.771917 | 83.82 | 41.692 | ||||
2 | TFLite | 164.14 | 1.59 | 45690 | 10.7 | 32.1 | 186.0195 | 5.795 | 463579 | 10.15 | 93.86 | 0.316368 | 100 | 245.619 | |||
Quant. | 42.62 | 2.15 | 42481 | 10.7 | 32.1 | 148.944 | 4.64 | 371176 | 8.74 | 87.88 | 0.462954 | 94.27 | 285.214 | ||||
3 | TFLite | - | - | - | - | - | - | - | - | - | - | - | - | - | |||
Quant. | 182.86 | 3.23 | 184581 | 10.7 | 32.1 | 491.9646 | 15.326 | 1226069 | 6.64 | 88.40 | 0.439292 | 90.34 | 375.191 | ||||
STM32F746 | 216 | Accel | 1 | TFLite | 1.14 | 0.153846 | 630 | 130.1 | 390.3 | 21.8568 | 0.056 | 12133 | 19.26 | 74.53 | 0.734273 | 100 | 28.823 |
Quant. | 0.402344 | 0.330078 | 351 | 130.1 | 390.3 | 38.2494 | 0.098 | 21115 | 60.16 | 67.00 | 0.808616 | 89.19 | 9.176 | ||||
2 | TFLite | 164.14 | 1.59 | 45690 | 130.1 | 390.3 | 588.5724 | 1.508 | 325814 | 7.13 | 98.34 | 0.172436 | 100 | 77.628 | |||
Quant. | 42.62 | 2.15 | 42481 | 130.1 | 390.3 | 439.0875 | 1.125 | 242919 | 5.72 | 79.25 | 0.624254 | 86.03 | 96.748 | ||||
3 | TFLite | - | - | - | - | - | - | - | - | - | - | - | - | - | |||
Quant. | 500.04 | 5.38 | 507581 | 130.1 | 390.3 | 2998.6749 | 7.683 | 1659565 | 3.27 | 80.47 | 0.60562 | 88.15 | 169.268 | ||||
Kalman | 1 | TFLite | 3.6 | 0.425781 | 1890 | 130.1 | 390.3 | 52.6905 | 0.135 | 29129 | 15.41 | 87.21 | 0.478239 | 100 | 35.869 | ||
Quant. | 1.21 | 1.08 | 981 | 130.1 | 390.3 | 80.7921 | 0.207 | 44656 | 45.52 | 68.57 | 0.771917 | 83.82 | 12.142 | ||||
2 | TFLite | 164.14 | 1.59 | 45690 | 130.1 | 390.3 | 590.5239 | 1.513 | 326834 | 7.15 | 93.86 | 0.316368 | 100 | 77.371 | |||
Quant. | 42.62 | 2.15 | 42481 | 130.1 | 390.3 | 435.5748 | 1.116 | 241128 | 5.68 | 87.88 | 0.462954 | 94.27 | 97.528 | ||||
3 | TFLite | - | - | - | - | - | - | - | - | - | - | - | - | - | |||
Quant. | 182.86 | 3.23 | 184581 | 130.1 | 390.3 | 1360.5858 | 3.486 | 753058 | 4.08 | 88.4 | 0.439292 | 90.34 | 135.662 |
References
- Gaynor, K.M.; Hojnowski, C.E.; Carter, N.H.; Brashares, J.S. The influence of human disturbance on wildlife nocturnality. Science 2018, 360, 1232–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, G.K.; Gupta, P. Wild Animal Detection Using Deep Convolutional Neural Network. In Proceedings of the 2nd International Conference on Computer Vision & Image Processing; Chaudhuri, B.B., Kankanhalli, M.S., Raman, B., Eds.; Springer: Singapore, 2018; pp. 327–338. [Google Scholar]
- Nguyen, H.; Maclagan, S.J.; Nguyen, T.D.; Nguyen, T.; Flemons, P.; Andrews, K.; Ritchie, E.G.; Phung, D. Animal Recognition and Identification with Deep Convolutional Neural Networks for Automated Wildlife Monitoring. In Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan, 19–21 October 2017; pp. 40–49. [Google Scholar] [CrossRef]
- Hammond, T.T.; Springthorpe, D.; Walsh, R.E.; Berg-Kirkpatrick, T. Using accelerometers to remotely and automatically characterize behavior in small animals. J. Exp. Biol. 2016, 219, 1618–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leoni, J.; Tanelli, M.; Strada, S.C.; Berger-Wolf, T. Ethogram-based automatic wild animal monitoring through inertial sensors and GPS data. Ecol. Inform. 2020, 59, 101112. [Google Scholar] [CrossRef]
- Ayele, E.D.; Das, K.; Meratnia, N.; Havinga, P.J.M. Leveraging BLE and LoRa in IoT network for wildlife monitoring system (WMS). In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 342–348. [Google Scholar] [CrossRef]
- Ayele, E.D.; Meratnia, N.; Havinga, P.J.M. Towards a New Opportunistic IoT Network Architecture for Wildlife Monitoring System. In Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 26–28 February 2018; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Sornin, N.; Luis, M.; Eirich, T.; Kramp, T.; Hersent, O. LoRaWAN Specifications; LoRa Alliance: San Ramon, CA, USA, 2015. [Google Scholar]
- González, L.A.; Bishop-Hurley, G.J.; Handcock, R.N.; Crossman, C. Behavioral classification of data from collars containing motion sensors in grazing cattle. Comput. Electron. Agric. 2015, 110, 91–102. [Google Scholar] [CrossRef]
- Smith, D.; Rahman, A.; Bishop-Hurley, G.J.; Hills, J.; Shahriar, S.; Henry, D.; Rawnsley, R. Behavior classification of cows fitted with motion collars: Decomposing multi-class classification into a set of binary problems. Comput. Electron. Agric. 2016, 131, 40–50. [Google Scholar] [CrossRef]
- Tamura, T.; Okubo, Y.; Deguchi, Y.; Koshikawa, S.; Takahashi, M.; Chida, Y.; Okada, K. Dairy cattle behavior classifications based on decision tree learning using 3-axis neck-mounted accelerometers. Anim. Sci. J. 2019, 90, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.-N.; Nguyen, T.; Khanh, P.C.P.; Trana, D.-T. An IoT-based Design Using Accelerometers in Animal Behavior Recognition Systems. IEEE Sens. J. 2021. [Google Scholar] [CrossRef]
- Brandes, S.; Sicks, F.; Berger, A. Behaviour Classification on Giraffes (Giraffa camelopardalis) Using Machine Learning Algorithms on Triaxial Acceleration Data of Two Commonly Used GPS Devices and Its Possible Application for Their Management and Conservation. Sensors 2021, 21, 2229. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, E.; Swain, D.; Cronin, G.; Moraes, L.; Trotter, M. Behaviour classification of extensively grazed sheep using machine learning. Comput. Electron. Agric. 2020, 169, 105175. [Google Scholar] [CrossRef]
- Debauche, O.; Mahmoudi, S.; Mahmoudi, S.A.; Manneback, P.; Bindelle, J.; Lebeau, F. Edge Computing for Cattle Behavior Analysis. In Proceedings of the 2020 Second International Conference on Embedded Distributed Systems (EDiS), Oran, Algeria, 3 November 2020; pp. 52–57. [Google Scholar] [CrossRef]
- Caria, M.; Schudrowitz, J.; Jukan, A.; Kemper, N. Smart farm computing systems for animal welfare monitoring. In Proceedings of the 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 22–26 May 2017; pp. 152–157. [Google Scholar] [CrossRef]
- Arablouei, R.; Currie, L.; Kusy, B.; Ingham, A.; Greenwood, P.L.; Bishop-Hurley, G. In-situ classification of cattle behavior using accelerometry data. Comput. Electron. Agric. 2021, 183, 106045. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Vanhoucke, V.; Senior, A.; Mao, M.Z. Improving the speed of neural networks on CPUs. In Proceedings of the Deep Learning and Unsupervised Feature Learning Workshop, NIPS 2011, Granada, Spain, 16–17 December 2011. [Google Scholar]
- Krishnamurthy, A.K.; Ahalt, S.C.; Melton, D.E.; Chen, P. Neural networks for vector quantization of speech and images. IEEE J. Sel. Areas Commun. 1990, 8, 1449–1457. [Google Scholar] [CrossRef]
- Gutierrez-Galan, D.; Dominguez-Morales, J.P.; Cerezuela-Escudero, E.; Rios-Navarro, A.; Tapiador-Morales, R.; Rivas-Perez, M.; Dominguez-Morales, M.; Jimenez-Fernandez, A.; Linares-Barranco, A. Embedded neural network for real-time animal behavior classification. Neurocomputing 2018, 272, 17–26. [Google Scholar] [CrossRef]
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter. 1995. Available online: https://perso.crans.org/club-krobot/doc/kalman.pdf (accessed on 23 April 2021).
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Dokic, K.; Martinovic, M.; Mandusic, D. Inference speed and quantisation of neural networks with TensorFlow Lite for Microcontrollers framework. In Proceedings of the 2020 5th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Corfu, Greece, 25–27 September 2020; pp. 1–6. [Google Scholar]
- Rast, W.; Kimmig, S.E.; Giese, L.; Berger, A. Machine learning goes wild: Using data from captive individuals to infer wildlife behaviours. PLoS ONE 2020, 15, e0227317. [Google Scholar] [CrossRef] [PubMed]
Device | Architecture | Features | Clock (MHz) | RAM (kBytes) | Flash (Mbytes) | Current (mA) |
---|---|---|---|---|---|---|
STM32L475 | Cortex-M4 | Ultra-low-power Single precision FPU | 80 | 128 | 1 | 10.7 |
STM32F746 | Corterx-M7 | High-performance DSP with FPU | 216 | 320 | 1 | 130.1 |
Device | Best Case (1 HL) | Midpoint Case (2 HL) | Worst Case (3 HL) |
---|---|---|---|
STM32L475 | 404 days | 263 days | 88 days |
STM32F746 | 101 days | 35 days | 15 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominguez-Morales, J.P.; Duran-Lopez, L.; Gutierrez-Galan, D.; Rios-Navarro, A.; Linares-Barranco, A.; Jimenez-Fernandez, A. Wildlife Monitoring on the Edge: A Performance Evaluation of Embedded Neural Networks on Microcontrollers for Animal Behavior Classification. Sensors 2021, 21, 2975. https://doi.org/10.3390/s21092975
Dominguez-Morales JP, Duran-Lopez L, Gutierrez-Galan D, Rios-Navarro A, Linares-Barranco A, Jimenez-Fernandez A. Wildlife Monitoring on the Edge: A Performance Evaluation of Embedded Neural Networks on Microcontrollers for Animal Behavior Classification. Sensors. 2021; 21(9):2975. https://doi.org/10.3390/s21092975
Chicago/Turabian StyleDominguez-Morales, Juan P., Lourdes Duran-Lopez, Daniel Gutierrez-Galan, Antonio Rios-Navarro, Alejandro Linares-Barranco, and Angel Jimenez-Fernandez. 2021. "Wildlife Monitoring on the Edge: A Performance Evaluation of Embedded Neural Networks on Microcontrollers for Animal Behavior Classification" Sensors 21, no. 9: 2975. https://doi.org/10.3390/s21092975