Analog-to-Information Conversion with Random Interval Integration
Abstract
:1. Introduction
2. Compressed Sensing Overview
3. Random Interval Integration
4. Experimental Results
4.1. Compression Ratio
4.2. Additive Noise
4.3. Sample Quantization
4.4. Demonstration and Discussion
5. Hardware Implementation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donoho, D.L. Compressed Sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Nam, H.; Park, J.; Park, J.-D. A 2–18 GHz Compressed Sensing Receiver with Broadband LO Chain in 0.13-$\mu$ m BiCMOS. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 620–622. [Google Scholar] [CrossRef]
- Andráš, I.; Dolinský, P.; Michaeli, L.; Šaliga, J. Sparse Signal Acquisition via Compressed Sensing and Principal Component Analysis. Meas. Sci. Rev. 2018, 18, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Mangia, M.; Pareschi, F.; Rovatti, R.; Setti, G. Adaptive Matrix Design for Boosting Compressed Sensing. IEEE Trans. Circuits Syst. I 2018, 65, 1016–1027. [Google Scholar] [CrossRef]
- Mangia, M.; Marchioni, A.; Pareschi, F.; Rovatti, R.; Setti, G. Administering Quality-Energy Trade-Off in IoT Sensing Applications by Means of Adapted Compressed Sensing. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 895–907. [Google Scholar] [CrossRef]
- Rousseau, S.; Helbert, D. Compressive Color Pattern Detection Using Partial Orthogonal Circulant Sensing Matrix. IEEE Trans. Image Process. 2020, 29, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, C.; Kim, I.-M. Coupled Online Robust Learning of Observation and Dictionary for Adaptive Analog-to-Information Conversion. IEEE Signal Process. Lett. 2019, 26, 139–143. [Google Scholar] [CrossRef]
- Qing, L.; Guangyao, H.; Xiaomei, F. Physical Layer Security in Multi-Hop AF Relay Network Based on Compressed Sensing. IEEE Commun. Lett. 2018, 22, 1882–1885. [Google Scholar] [CrossRef]
- Wadhwa, A.; Madhow, U.; Shanbhag, N.R. Slicer Architectures for Analog-to-Information Conversion in Channel Equalizers. IEEE Trans. Commun. 2017, 65, 1234–1246. [Google Scholar] [CrossRef]
- Mangia, M.; Pareschi, F.; Varma, R.; Rovatti, R.; Kovacevic, J.; Setti, G. Rakeness-Based Compressed Sensing of Multiple-Graph Signals for IoT Applications. IEEE Trans. Circuits Syst. II 2018, 65, 682–686. [Google Scholar] [CrossRef]
- Picariello, F.; Iadarola, G.; Balestrieri, E.; Tudosa, I.; De Vito, L. A Novel Compressive Sampling Method for ECG Wearable Measurement Systems. Measurement 2021, 167, 108259. [Google Scholar] [CrossRef]
- Balestrieri, E.; Daponte, P.; De Vito, L.; Picariello, F.; Rapuano, S.; Tudosa, I. A Wi-Fi IoT Prototype for ECG Monitoring Exploiting a Novel Compressed Sensing Method. Acta IMEKO 2020, 9, 38. [Google Scholar] [CrossRef]
- Andras, I.; Michaeli, L.; Saliga, J. Compressed Sensing with Continuous Parametric Reconstruction. IJECE 2021, 11, 851. [Google Scholar] [CrossRef]
- Wakin, M.; Becker, S.; Nakamura, E.; Grant, M.; Sovero, E.; Ching, D.; Yoo, J.; Romberg, J.; Emami-Neyestanak, A.; Candes, E. A Nonuniform Sampler for Wideband Spectrally-Sparse Environments. IEEE J. Emerg. Sel. Top. Circuits Syst. 2012, 2, 516–529. [Google Scholar] [CrossRef] [Green Version]
- Bellasi, D.E.; Bettini, L.; Benkeser, C.; Burger, T.; Huang, Q.; Studer, C. VLSI Design of a Monolithic Compressive-Sensing Wideband Analog-to-Information Converter. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 552–565. [Google Scholar] [CrossRef]
- Djelouat, H.; Amira, A.; Bensaali, F. Compressive Sensing-Based IoT Applications: A Review. JSAN 2018, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Onori, D.; Azana, J. A Microwave Photonic Radar Warning Receiver Based on Deep Compressed Sensing. In Proceedings of the 2019 International Topical Meeting on Microwave Photonics, Ottawa, ON, Canada, 7–10 October 2019; pp. 1–4. [Google Scholar]
- Hongyi, X.; Haiqing, J.; Chaozhu, Z. Multi-Narrowband Signals Receiving Method Based on Analog-to-Information Convertor and Block Sparsity. J. Syst. Eng. Electron. 2017, 28, 643. [Google Scholar] [CrossRef] [Green Version]
- Gangopadhyay, D.; Allstot, E.G.; Dixon, A.M.R.; Natarajan, K.; Gupta, S.; Allstot, D.J. Compressed Sensing Analog Front-End for Bio-Sensor Applications. IEEE J. Solid State Circuits 2014, 49, 426–438. [Google Scholar] [CrossRef]
- Mamaghanian, H.; Khaled, N.; Atienza, D.; Vandergheynst, P. Design and Exploration of Low-Power Analog to Information Conversion Based on Compressed Sensing. IEEE J. Emerg. Sel. Top. Circuits Syst. 2012, 2, 493–501. [Google Scholar] [CrossRef]
- Pareschi, F.; Albertini, P.; Frattini, G.; Mangia, M.; Rovatti, R.; Setti, G. Hardware-Algorithms Co-Design and Implementation of an Analog-to-Information Converter for Biosignals Based on Compressed Sensing. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 149–162. [Google Scholar] [CrossRef]
- Taheri, O.; Vorobyov, S.A. Segmented Compressed Sampling for Analog-to-Information Conversion: Method and Performance Analysis. IEEE Trans. Signal Process. 2011, 59, 554–572. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yu, Z.; Hoyos, S.; Sadler, B.M.; Silva-Martinez, J. A Sub-Nyquist Rate Sampling Receiver Exploiting Compressive Sensing. IEEE Trans. Circuits Syst. I 2011, 58, 507–520. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, N.; Peng, X. Compressive Circulant Matrix Based Analog to Information Conversion. IEEE Signal Process. Lett. 2014, 21, 428–431. [Google Scholar] [CrossRef]
- Maleh, R.; Fudge, G.L.; Boyle, F.A.; Pace, P.E. Analog-to-Information and the Nyquist Folding Receiver. IEEE J. Emerg. Sel. Top. Circuits Syst. 2012, 2, 564–578. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, Y.H.; Liu, J. Random Triggering-Based Sub-Nyquist Sampling System for Sparse Multiband Signal. IEEE Trans. Instrum. Meas. 2017, 66, 1789–1797. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; You, F.; He, S. An Improved Signal Reconstruction of Modulated Wideband Converter Using a Sensing Matrix Built upon Synchronized Modulated Signals. Circuits Syst. Signal Process. 2019, 38, 3187–3210. [Google Scholar] [CrossRef]
- Byambadorj, Z.; Asami, K.; Yamaguchi, T.J.; Higo, A.; Fujita, M.; Iizuka, T. Theoretical Analysis of Noise Figure for Modulated Wideband Converter. IEEE Trans. Circuits Syst. I 2020, 67, 298–308. [Google Scholar] [CrossRef]
- Duarte, M.F.; Eldar, Y.C. Structured Compressed Sensing: From Theory to Applications. IEEE Trans. Signal Process. 2011, 59, 4053–4085. [Google Scholar] [CrossRef] [Green Version]
- Abari, O.; Lim, F.; Chen, F.; Stojanovic, V. Why Analog-to-Information Converters Suffer in High-Bandwidth Sparse Signal Applications. IEEE Trans. Circuits Syst. I 2013, 60, 2273–2284. [Google Scholar] [CrossRef]
- Daponte, P.; Vito, L.D.; Iadarola, G.; Iovini, M.; Rapuano, S. Experimental Comparison of Two Mathematical Models for Analog-to-Information Converters. In Proceedings of the 21st IMEKO TC4 Symposium “Measurements of Electrical Quantities”, Budapest, Hungary, 7–9 September 2016. [Google Scholar]
- Daponte, P.; De Vito, L.; Iadarola, G.; Rapuano, S. Analog Multiplication in Random Demodulation Analog-to-Information Converters. In Proceedings of the Journal of Physics: Conference Series, Belfast, UK, 3–6 September 2018; IOP Publishing: Bristol, UK, 2018; Volume 1065, p. 052048. [Google Scholar]
- Haque, T.; Yazicigil, R.T.; Pan, K.J.-L.; Wright, J.; Kinget, P.R. Theory and Design of a Quadrature Analog-to-Information Converter for Energy-Efficient Wideband Spectrum Sensing. IEEE Trans. Circuits Syst. I 2015, 62, 527–535. [Google Scholar] [CrossRef]
- Yazicigil, R.T.; Haque, T.; Kumar, M.; Yuan, J.; Wright, J.; Kinget, P.R. How to Make Analog-to-Information Converters Work in Dynamic Spectrum Environments with Changing Sparsity Conditions. IEEE Trans. Circuits Syst. I 2018, 65, 1775–1784. [Google Scholar] [CrossRef]
- Yazicigil, R.T.; Haque, T.; Whalen, M.R.; Yuan, J.; Wright, J.; Kinget, P.R. Wideband Rapid Interferer Detector Exploiting Compressed Sampling with a Quadrature Analog-to-Information Converter. IEEE J. Solid State Circuits 2015, 50, 3047–3064. [Google Scholar] [CrossRef]
- Pelissier, M.; Studer, C. Non-Uniform Wavelet Sampling for RF Analog-to-Information Conversion. IEEE Trans. Circuits Syst. I 2018, 65, 471–484. [Google Scholar] [CrossRef]
- Daponte, P.; De Vito, L.; Picariello, F.; Tudosa, I.; Rapuano, S. Assessment of Analog-to-Information Converters Based on Non-Uniform Sampling for Spectrum Analysis. In Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference, Houston, TX, USA, 14–17 May 2018; pp. 1–6. [Google Scholar]
- De Vito, L.; Iadarola, G.; Lamonaca, F.; Picariello, F.; Rapuano, S.; Tudosa, I. Non-Uniform Wavelet Bandpass Sampling Analog-to-Information Converter: A Hardware Implementation and Its Experimental Assessment. Measurement 2019, 134, 739–749. [Google Scholar] [CrossRef]
- Daponte, P.; De Vito, L.; Iadarola, G.; Rapuano, S. Effects of PRBS Jitter on Random Demodulation Analog-to-Information Converters. In Proceedings of the 2016 IEEE Metrology for Aerospace, Florence, Italy, 22–23 June 2016; pp. 630–635. [Google Scholar]
- Yi, S.; Lai, Z.; He, Z.; Cheung, Y.; Liu, Y. Joint Sparse Principal Component Analysis. Pattern Recognit. 2017, 61, 524–536. [Google Scholar] [CrossRef]
- Wang, J.; Shim, B. Exact Recovery of Sparse Signals Using Orthogonal Matching Pursuit: How Many Iterations Do We Need? IEEE Trans. Signal Process. 2016, 64, 4194–4202. [Google Scholar] [CrossRef]
- Andráš, I.; Dolinský, P.; Michaeli, L.; Šaliga, J. A Time Domain Reconstruction Method of Randomly Sampled Frequency Sparse Signal. Measurement 2018, 127, 68–77. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šaliga, J.; Kováč, O.; Andráš, I. Analog-to-Information Conversion with Random Interval Integration. Sensors 2021, 21, 3543. https://doi.org/10.3390/s21103543
Šaliga J, Kováč O, Andráš I. Analog-to-Information Conversion with Random Interval Integration. Sensors. 2021; 21(10):3543. https://doi.org/10.3390/s21103543
Chicago/Turabian StyleŠaliga, Ján, Ondrej Kováč, and Imrich Andráš. 2021. "Analog-to-Information Conversion with Random Interval Integration" Sensors 21, no. 10: 3543. https://doi.org/10.3390/s21103543