Real-Time Measurement of Drilling Fluid Rheological Properties: A Review
Abstract
:1. Introduction
2. Rheological Properties of Drilling Fluid
3. Real-Time Measurement Technologies
3.1. Online Rotational Couette Viscometer
3.2. Pipe Viscometer
3.3. The Technology Based on Marsh Funnel
3.4. Acoustic Technology
4. Discussion and Prospects
- (1)
- The online Couette viscometer is the most similar to the API standard measurement method, so it has the highest accuracy and can measure all drilling fluid rheological properties. However, the gap between the rotor and the stator is narrow, and the diameter of solids must less than 1 mm. Solid or gels particles may be sedimented in the viscometer, so the online Couette viscometer is easily plugged. It is inconvenient to use and requires regular cleaning and maintenance. This viscometer is suitable for drilling fluids with low viscosity and low solid content.
- (2)
- Compared with the online Couette viscometer, the pipe viscometer provides better automatic measurement technology. The solid and gel particles in the drilling fluid will not settle in the pipe. By adding additional sensors to the pipe, additional variables can be obtained such as fluid density, temperature, critical Reynolds number, and real-time friction coefficient. However, it cannot measure the 10 s and 10 min gel strength. The pipe viscometer is large, and it occupies a large space for installation. Compared with the pipe viscometer, the helical pipe viscometer has obvious advantages, having a compact size and more general friction pressure loss curve. At the same time, the helical pipe increases the friction pressure loss and delayed flow state transition, so the helical pipe viscometer can be used to collect more data in the laminar flow state, thereby improving the accuracy of low shear rheological parameter estimation. However, the theoretical basis for the helical pipe viscometer is still under development.
- (3)
- Artificial intelligence technology is the cheapest method, because only the Marsh funnel is needed, and the mud balance and solid content meter may be added optionally. Although the test of the Marsh funnel, density, and sand content was simple and quick, it still required manual testing. The neural network model was different when the drilling system was different. One artificial intelligence method can be used in wells which are in the same block or in the same drilling system. The test results of the tuning fork technology were Marsh funnel viscosity and density, which can be combined with artificial intelligence technology to form an automatic online measurement of drilling fluid rheological properties.
- (4)
- The current drilling fluid rheology measurement is offline in API recommended practice for field testing drilling fluids, which can no longer meet the needs of intelligent drilling. In order to control and optimize rheological parameters in real-time, it is necessary to consider developing a criterion that can measure drilling rheological properties in real time. The standard Couette viscometer also has shortcomings [75,76,77,78] analyzing the end-effect, correction, and reliability of the Couette viscometer. It is an opportunity to use real-time drilling fluid rheological properties measurement to improve the current criteria. The pipe viscometer is good in automation and will not be plugged by solids and gel. The reliability and accuracy of pipe viscometers often outweigh rotational viscometers. At present, the pipe viscometer used is large, so it is necessary to miniaturize the instrument for convenient use in the field. The helical pipe viscometer requires further mechanism research in theory to promote the real-time measurement of rheology.
- (5)
- The practicability of the instrument is relatively not good. We think two convenient methods can be considered in the future. One method is using MWD technology to measure the pressure in the drill string and annulus while drilling, the ECD can be accurately obtained. The drill pipe and annulus are considered as a large pipe viscometer, which can calculate the drilling fluid rheological properties. The other method is acoustic technology, including tuning fork technology, ultrasonic technology, etc. There are many articles using ultrasound to measure fluid parameters [79,80,81,82,83], but the composition of the drilling fluid is complex, and the ultrasonic attenuation is related to many factors [26] (temperature, density, viscosity, solid content, etc.). For example, if an increase in ultrasonic attenuation is due to the entrance of solids into the system, the density should also increase, and some increase may be observed in the viscosity. On the other hand, if an increase in the attenuation is observed due to the addition of polymers, the density may change slightly or not even change, but viscosity will significantly increase. The sound speed is also important since it helps the system to discern when the density is rising due to the solids suspended or solids dissolved. Therefore, the theory of ultrasound technology needs to be developed by simulation and experiment [21,22,83]. Magalhães et al. [26] used density, viscosity, ultrasound attenuation, and sound speed as inputs to establish an ANN model of concentration of the suspended solids. The installation of these two methods is convenient, but further technology and theoretical research are needed.
- (6)
- The current drilling fluid performance testing mainly measures the drilling fluid that samples from the mud pit. The drilling fluid returning from the annulus contains a lot of stratum information, so its testing is also very important and can help judge the formation. Testing its performance can also make better decisions for processing to maintain the performance of drilling fluid. However, the mud returning from the annulus contains many solid particles, and some particles have large diameters. Therefore, the allowable particle diameter of the instrument needs to be further considered in the selection of equipment.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bourgoyne, A.T.; Millheim, K.K.; Chenevert, M.E.; Young, F.S. Applied Drilling Engineering; Society of Petroleum Engineers: Richardson, TX, USA, 1986; Volume 2, ISBN 1555630014. [Google Scholar]
- Hansen, E. Automatic Evaluation of drilling Fluid Properties. Master Thesis, University of Stavanger, Stavanger, Norway, 2012. [Google Scholar]
- Bloys, B.; Davis, N.; Smolen, B.; Bailey, L.; Houwen, O.; Reid, P.; Sherwood, J.; Fraser, L.; Hodder, M. Designing and managing drilling fluid. Oilf. Rev. 1994, 6, 33–43. [Google Scholar]
- Caenn, R.; Chillingar, G.V. Drilling fluids: State of the art. J. Pet. Sci. Eng. 1996, 14, 221–230. [Google Scholar] [CrossRef]
- Apaleke, A.S.; Al-Majed, A.; Hossain, M.E. Drilling fluid: State of the art and future trend. In Proceedings of the North Africa Technical Conference and Exhibition 2012, Cairo, Egypt, 20–22 February 2012; pp. 101–113. [Google Scholar] [CrossRef] [Green Version]
- Al-Abduljabbar, A.; Elkatatny, S.; Mahmoud, M.; Abdelgawad, K.; Al-Majed, A. A Robust Rate of Penetration Model for Carbonate Formation. J. Energy Resour. Technol. Trans. ASME 2019, 141, 1–9. [Google Scholar] [CrossRef]
- Bourgoyne, A.T.; Young, F.S. A Multiple Regression Approach to Optimal Drilling and Abnormal Pressure Detection. Soc. Pet. Eng. J. 1974, 14, 371–384. [Google Scholar] [CrossRef]
- Ashrafi, S.B.; Anemangely, M.; Sabah, M.; Ameri, M.J. Application of hybrid artificial neural networks for predicting rate of penetration (ROP): A case study from Marun oil field. J. Pet. Sci. Eng. 2019, 175, 604–623. [Google Scholar] [CrossRef]
- Eskandarian, S.; Bahrami, P.; Kazemi, P. A comprehensive data mining approach to estimate the rate of penetration: Application of neural network, rule based models and feature ranking. J. Pet. Sci. Eng. 2017, 156, 605–615. [Google Scholar] [CrossRef]
- Shi, X.; Liu, G.; Gong, X.; Zhang, J.; Wang, J.; Zhang, H. An Efficient Approach for Real-Time Prediction of Rate of Penetration in Offshore Drilling. Math. Probl. Eng. 2016, 2016. [Google Scholar] [CrossRef]
- Anemangely, M.; Ramezanzadeh, A.; Tokhmechi, B.; Molaghab, A.; Mohammadian, A. Drilling rate prediction from petrophysical logs and mud logging data using an optimized multilayer perceptron neural network. J. Geophys. Eng. 2018, 15, 1146–1159. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, O.S.; Adeniran, A.A.; Samsuri, A. Computational intelligence based prediction of drilling rate of penetration: A comparative study. J. Pet. Sci. Eng. 2019, 172, 1–12. [Google Scholar] [CrossRef]
- Diaz, M.B.; Kim, K.Y.; Shin, H.S.; Zhuang, L. Predicting rate of penetration during drilling of deep geothermal well in Korea using artificial neural networks and real-time data collection. J. Nat. Gas Sci. Eng. 2019, 67, 225–232. [Google Scholar] [CrossRef]
- Mullins, G. Field Device to Measure Viscosity, Density, and Other Slurry Properties in Drilled Shafts [Summary]. 2016. Available online: https://rosap.ntl.bts.gov/view/dot/31051 (accessed on 20 May 2021).
- Jenkins, R.W.; Schmidt, D.A.; Stokes, D.; Ong, D. Drilling the First Ultra Deepwater Wells Offshore Malaysia. In Proceedings of the SPE/IADC Drilling Conference, Amsterdam, The Netherlands, 19–21 February 2003. [Google Scholar] [CrossRef]
- Raja, H.; Sørmo, F.; Vinther, M.L. Case-based reasoning: Predicting real-time drilling problems and improving drilling performance. SPE Middle East Oil Gas Show Conf. MEOS Proc. 2011, 2, 1102–1113. [Google Scholar] [CrossRef]
- Gandelman, R.A.; Martins, A.L.; Teixeira, G.T.; Aragao, A.F.L.; Neto, R.M.C.; Lins, D.G.M.; Lenz, C.; Ghilardi, P.; Mari, A. Real time drilling data diagnosis implemented in deepwater wells-A reality. Proc. Annu. Offshore Technol. Conf. 2013, 1, 71–79. [Google Scholar] [CrossRef]
- Hestad, V.; Gulbrandsen, A. Drilling fluids automix. In Proceedings of the SPE/IADC Middle East Drilling Technology Conference and Exhibition, Abu Dhabi, United Arab Emirates, 29–31 January 2018. [Google Scholar] [CrossRef]
- Guria, C.; Kumar, R.; Mishra, P. Rheological analysis of drilling fluid using Marsh Funnel. J. Pet. Sci. Eng. 2013, 105, 62–69. [Google Scholar] [CrossRef]
- API Recommended Practice 13B-1: Recommended Practice for Field Testing Water Based Drilling Fluids. December 2003. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjI4pLPxdLwAhXUMd4KHQGSDQYQFjABegQIAhAD&url=https%3A%2F%2Fwww.techstreet.com%2Fapi%2Fproducts%2Fpreview%2F1613545&usg=AOvVaw2rplFQcl-KvTmu934Q6qOv (accessed on 20 May 2021).
- Saasen, A.; Omland, T.H.; Asa, S.; Ekrene, S.; Brévière, J.; Villard, E.; Geoservices, S.A.; Tehrani, A.; Cameron, J.; Freeman, M.; et al. Automatic Measurement of Drilling Fluid and Drill-Cuttings Properties. SPE Drill. Complet. 2009, 24, 611–625. [Google Scholar] [CrossRef]
- Saasen, A.; Omland, T.H.; Asa, S.; Ekrene, S.; Breviere, J.; Villard, E.; Tehrani, A.; Cameron, J.; Freeman, M.; Growcock, F.; et al. Automatic Measurement of Drilling Fluid and Drill Cuttings Properties. In Proceedings of the The 2008 IADC/SPE Drilling Conference, Orlando, FL, USA, 4–6 March 2008. [Google Scholar] [CrossRef]
- Broussard, S.; Gonzalez, P.; Murphy, R.; Marvel, C. Making real-time fluid decisions with real-time fluid data at the rig site. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 1–4 November 2010; Volume 2, pp. 1548–1557. [Google Scholar] [CrossRef]
- Stock, T.; Ronaes, E.; Fossdal, T.; Bjerkaas, J.; Swaco, M. The Development and Successful Application of an Automated Real-Time Drilling Fluids Measurement System. In Proceedings of the SPE Intelligent Energy International, Utrecht, The Netherlands, 27–29 March 2012. [Google Scholar] [CrossRef]
- Ronaes, E.; Fossdal, T.H.; Stock, T. Real-time drilling fluid monitoring and analysis-adding to integrated drilling operations. In Proceedings of the IADC/SPE Drilling Conference and Exhibition; Society of Petroleum Engineers, San Diego, CA, USA, 6–8 March 2012. [Google Scholar] [CrossRef]
- Magalhães, S.; Scheid, C.; Calçada, L.A.; Folsta, M. Development Of On-Line Sensors For Automated Measurement Of Drilling Fluid Properties. In Proceedings of the 2014 IADC/SPE Drilling Conference and Exhibition, Fort Worth, TX, USA, 4 March 2014. [Google Scholar] [CrossRef]
- Magalhães Filho, S.D.C.; Folsta, M.; Noronha, E.V.N.; Scheid, C.M.; Calçada, L.A. Study of continuous rheological measurements in drilling fluids. Braz. J. Chem. Eng. 2017, 34, 775–788. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, S.; Calçada, L.A.; Scheid, C.; Paraíso, E.; Moraes, G.; Valim, E.; Almeida, H.; Waldmann, A.; Leibsohn, A.; Marques de Sá, C.H. Field Results of a Real Time Drilling Fluid Monitoring System. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Virtual, 27–31 July 2020; Society of Petroleum Engineers: Richardson, TX, USA, 2020. [Google Scholar] [CrossRef]
- Dotson, A.; Mahajan, L.; Kulkarni, S.D.; Landry, A.; Eiland, E. Improvements in automated continuous measurement of drilling fluid properties. In Proceedings of the Society of Petroleum Engineers-SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition 2017, Dammam, Saudi Arabia, 24–27 April 2017. [Google Scholar] [CrossRef]
- Ombe, E.M.; Elyas, O.A.; Abdul Qader, T.; Mehdi, M. Application of a Real Time Mud Density and Rheology Monitoring System to Enhance Drilling in High Pressure High Temperature Gas Wells with MPD Systems. In Proceedings of the International Petroleum Technology Conference, Dhahran, Saudi Arabia, 13–15 January 2020. [Google Scholar] [CrossRef]
- Vajargah, A.K.; Sullivan, G.; Oort, E. Van Automated Fluid Rheology and ECD Management. In Proceedings of the SPE Deepwater Drilling & Completions Conference, Galveston, TX, USA, 14–15 September 2016; pp. 14–15. [Google Scholar] [CrossRef]
- Gul, S.; Van Oort, E.; Mullin, C.; Ladendorf, D.; Resources, P.N.; Dutch, R. Automated Surface Measurements of Drilling Fluid Properties: Field Application in the Permian Basin. SPE Drill. Complet. 2019, 1–17. [Google Scholar] [CrossRef]
- Taugbøl, K.; Brevik, J.O.; Rudshaug, B.; Asa, E. Automatic Drilling Fluid Measurements Methods for measuring density and rheology of drilling fluids. In Proceedings of the SPE Russian Petroleum Technology Conference, Moscow, Russia, 22–24 October 2019; pp. 22–24. [Google Scholar] [CrossRef]
- Taugbøl, K.; Sola, B.; Forshaw, M.; Fjogstad, A. Automatic Drilling Fluids Monitoring. In Proceedings of the SPE/IADC International Drilling Conference and Exhibition, Virtual, 9 March 2021. [Google Scholar] [CrossRef]
- Krogsæter, K.L. Automatic Evaluation of Drilling Fluid Properties Conventional and MPD Operations. Master’s Thesis, University of Stavanger, Stavanger, Norway, 2013. [Google Scholar]
- Frøyland, N. Automatic Evaluation and Adjustment of Drilling Fluid Properties and Compositions during MPD Operations and Its Cost-Benefit Analysis. Master’s Thesis, University of Stavanger, Stavanger, Norway, 2014. [Google Scholar]
- Aadnoy, B.S.; Cooper, I.; Miska, S.; Mitchell, R.F.; Payne, M.L. Advanced Drilling and Well Technology; SPE: Richardson, TX, USA, 2009; ISBN 1555631452. [Google Scholar]
- Ahmed, R.; Miska, S. Advanced wellbore hydraulics. Adv. Drill. Well Technol. 2009, 191–220. Available online: https://www.researchgate.net/publication/284313668_Advanced_wellbore_hydraulics (accessed on 20 May 2021).
- Rondon, J.; Barrufet, M.A.; Falcone, G. A novel downhole sensor to determine fluid viscosity. Flow Meas. Instrum. 2012, 23, 9–18. [Google Scholar] [CrossRef]
- Carlsen, L.A.; Nygaard, G.; Time, R. Utilizing instrumented stand pipe for monitoring drilling fluid dynamics for improving automated drilling operations. IFAC Proc. Vol. 2012, 45, 217–222. [Google Scholar] [CrossRef]
- Vajargah, A.K.; van Oort, E. Automated drilling fluid rheology characterization with downhole pressure sensor data. In Proceedings of the SPE/IADC Drilling Conference and Exhibition, London, UK, 17 March 2015. [Google Scholar] [CrossRef]
- Vajargah, A.K.; van Oort, E. Determination of drilling fluid rheology under downhole conditions by using real-time distributed pressure data. J. Nat. gas Sci. Eng. 2015, 24, 400–411. [Google Scholar] [CrossRef]
- Baoshuang, L.; Zhongjie, W.; Yunqian, M.; Yunfeng, L.; Zunnian, L.; Jianmeng, S. New Method of Online Measurement of Drilling Fluid Rheology. Drill. FLUID Complet. FLUID 2016, 33, 56–59. [Google Scholar] [CrossRef]
- Haoyu, S.; Yanjun, Z.; Haidong, L. Research and Application of Online Monitoring Device for Rheology of Drilling Fluid with the Type of Altered-diameter Shaped Tube. Sino-Glob. Energy 2019, 24, 49–54. [Google Scholar]
- Gul, S.; Erge, O.; Oort, E. Van Helical Pipe Viscometer System for Automated Mud Rheology Measurements. In Proceedings of the IADC/SPE International Drilling Conference and Exhibition, Galveston, TX, USA, 3–5 March 2020. [Google Scholar] [CrossRef]
- Gul, S.; Erge, O.; van Oort, E. Frictional pressure losses of non-Newtonian fluids in helical pipes: Applications for automated rheology measurements. J. Nat. Gas Sci. Eng. 2020, 73, 103042. [Google Scholar] [CrossRef]
- Mashelkar, R.A.; Devarajan, G.V. Secondary flow of non-Newtonian fluids-2. Frictional losses in laminar flow of purely viscous and viscoelastic fluids through coiled tubes. Trans. Inst. Chem. Eng. 1976, 54, 108–114. [Google Scholar]
- Mishra, P.; Gupta, S.N. Momentum Transfer in Curved Pipes. 2. Non-Newtonian Fluids. Ind. Eng. Chem. Res. 1979, 18, 137–142. [Google Scholar] [CrossRef]
- Pimenta, T.A.; Campos, J.B.L.M. Friction losses of Newtonian and non-Newtonian fluids flowing in laminar regime in a helical coil. Exp. Therm. Fluid Sci. 2012, 36, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Marsh, H.N. Properties and treatment of rotary mud. Trans. AIME 1931, 92, 234–251. [Google Scholar] [CrossRef]
- Pitt, M.J.; Leeds, U. The Marsh Funnel and Drilling Fluid Viscosity: A New Equation for Field Use. SPE Drill. Complet. 2000, 15, 5–8. [Google Scholar] [CrossRef]
- Balhoff, M.T.; Lake, L.W.; Bommer, P.M.; Lewis, R.E.; Weber, M.J.; Calderin, J.M. Rheological and yield stress measurements of non-Newtonian fl uids using a Marsh Funnel. J. Pet. Sci. Eng. 2011, 77, 393–402. [Google Scholar] [CrossRef]
- Almahdawi, F.H.M.; Al-Yaseri, A.Z.; Jasim, N. Apparent viscosity direct from Marsh funnel test. Iraqi J. Chem. Pet. Eng. 2014, 15, 51–57. [Google Scholar]
- Schoesser, B.; Thewes, M. Marsh Funnel testing for rheology analysis of bentonite slurries for Slurry Shields. In Proceedings of the ITA WTC 2015 Congress and 41st General Assembl, Dubrovnik, Croatia, 22–28 May 2015; pp. 22–28. [Google Scholar]
- Abdulrahman, H.A.; Jouda, A.; Adam, M.; Mohammed, I.; Mohammed, M.M.; Elfadil, M.O. Calculation Rheological Properties of Water Base MudUsing Marsh Funnel. Bachelor’s Thesis, Sudan University of Science and Technology, Khartoum, Sudan, 2015. [Google Scholar]
- Sedaghat, A. A novel and robust model for determining rheological properties of Newtonian and non-Newtonian fl uids in a marsh funnel. J. Pet. Sci. Eng. 2017, 156, 896–916. [Google Scholar] [CrossRef]
- Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1987, 11, 341–359. [Google Scholar] [CrossRef]
- Liew, S.S.; Khalil-Hani, M.; Bakhteri, R. An optimized second order stochastic learning algorithm for neural network training. Neurocomputing 2016, 186, 74–89. [Google Scholar] [CrossRef]
- Elkatatny, S. Real-Time Prediction of Rheological Parameters of KCl Water-Based Drilling Fluid Using Artificial Neural Networks. Arab. J. Sci. Eng. 2017, 42, 1655–1665. [Google Scholar] [CrossRef]
- Elkatatny, S.; Tariq, Z.; Mahmoud, M. Real time prediction of drilling fluid rheological properties using Artificial Neural Networks visible mathematical model (white box). J. Pet. Sci. Eng. 2016, 146, 1202–1210. [Google Scholar] [CrossRef]
- Elkatatny, S.M. Determination the rheological properties of invert emulsion based mud on real time using artificial neural network. Soc. Pet. Eng. SPE Kingdom Saudi Arab. Annu. Tech. Symp. Exhib. 2016. [Google Scholar] [CrossRef]
- Abdelgawad, K.; Elkatatny, S.; Mousa, T.; Mahmoud, M.; Patil, S. Real time determination of rheological properties of spud drilling fluids using a hybrid artificial intelligence technique. Soc. Pet. Eng. SPE Kingdom Saudi Arab. Annu. Tech. Symp. Exhib. 2018. [Google Scholar] [CrossRef]
- Elkatatny, S.; Gomaa, I.; Moussa, T. New approach to obtain the rheological properties of drill-in fluid on a real-time using artificial intelligence. Petroleum 2019. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Mahdi, D.S. Apparent viscosity prediction of water-based muds using empirical correlation and an artificial neural network. Energies 2019, 12, 3067. [Google Scholar] [CrossRef] [Green Version]
- Elkatatny, S. Real-Time Prediction of the Rheological Properties of Water-Based Drill-In Fluid Using Artificial Neural Networks. Sustainability 2019, 11, 5008. [Google Scholar] [CrossRef] [Green Version]
- Gowida, A.; Elkatatny, S.; Ramadan, E.; Abdulraheem, A. Data-Driven Framework to Predict the Rheological Properties of CaCl2 Brine-Based Drill-in Fluid Using Artificial Neural Network. Energies 2019, 12, 1880. [Google Scholar] [CrossRef] [Green Version]
- Alsabaa, A.; Gamal, H.; Elkatatny, S.; Abdulraheem, A. New correlations for better monitoring the all-oil mud rheology by employing artificial neural networks. Flow Meas. Instrum. 2021, 78, 101914. [Google Scholar] [CrossRef]
- Alsabaa, A.; Gamal, H.A.; Elkatatny, S.M.; Abdulraheem, A. Real-Time Prediction of Rheological Properties of All-Oil Mud Using Artificial Intelligence. In Proceedings of the 54th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, Golden, CO, USA, 28 June–1 July 2020. [Google Scholar]
- Alsabaa, A.; Gamal, H.; Elkatatny, S.; Abdulraheem, A. Real-time prediction of rheological properties of invert emulsion mud using adaptive neuro-fuzzy inference system. Sensors 2020, 20, 1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomaa, I.; Elkatatny, S.; Abdulraheem, A. Real-time determination of rheological properties of high over-balanced drilling fluid used for drilling ultra-deep gas wells using artificial neural network. J. Nat. Gas Sci. Eng. 2020, 77, 103224. [Google Scholar] [CrossRef]
- Bispo, V.D.d.S.; Scheid, C.M.; Calçada, L.A.; Meleiro, L.A.d.C. Development of an ANN-based soft-sensor to estimate the apparent viscosity of water-based drilling fluids. J. Pet. Sci. Eng. 2017, 150. [Google Scholar] [CrossRef]
- Miller, A.; Oil, M.; Sea, N.; Minton, R.C.; Services, M.; Colquhoun, R.; Automatics, M.; Ketchion, M. The Continuous Measurement and Recording of Drilling Fluid Density and Viscosity. In Proceedings of the SPE/IADC Drilling Conference, Amsterdam, The Netherlands, 1–3 March 2011. [Google Scholar] [CrossRef]
- Ofoche, P.; Noynaert, S. Real-Time Measurement of Drilling Fluid Rheology and Density using Acoustics. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference; Society of Petroleum Engineers, Abu Dhabi, United Arab Emirates, 13–15 October 2020. [Google Scholar] [CrossRef]
- Time, R.W.; Rabenjafimanantsoa, H.A.; Kelessidis, V.C.; Maglione, R. On End-Effect Correction for Couette Type Viscometers for Newtonian and Non-Newtonian Fluids. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.660.3332&rep=rep1&type=pdf (accessed on 20 May 2021).
- Sisodia, M.S.; Rajak, D.K.; Pathak, A.K.; Guria, C. An improved estimation of shear rate for yield stress fluids using rotating concentric cylinder Fann viscometer. J. Pet. Sci. Eng. 2015, 125, 247–255. [Google Scholar] [CrossRef]
- Kumar, V.; Guria, C. An improved shear rate estimation using rotating coaxial cylinder Fann viscometer. J. Pet. Sci. Eng. 2013, 110, 162–168. [Google Scholar] [CrossRef]
- Fernandes, R.R.; Turezo, G.; Andrade, D.E.V.; Franco, A.T.; Negrão, C.O.R. Are the rheological properties of water-based and synthetic drilling fluids obtained by the Fann 35A viscometer reliable? J. Pet. Sci. Eng. 2019, 177, 872–879. [Google Scholar] [CrossRef]
- Wrobel, B.M. Ultrasonic Measurement and Characterization of Liquid-Particle Flow. Master’s Thesis, University of Stavanger, Stavanger, Norway, 2012. [Google Scholar]
- Ke, W. Ultrasonic Mud Density On-Line Detection System Research. Master’s Thesis, Shenyang University of Industry, Shenyang, China, 2015. [Google Scholar]
- Rahman, M. In-line ultrasound based rheology-A new tool for the measurement of flow and rheological properties of cement based grout. In Proceedings of the 47th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 23–26 June 2013. [Google Scholar]
- Wiklund, J.; Stading, M. Application of in-line ultrasound Doppler-based UVP–PD rheometry method to concentrated model and industrial suspensions. Flow Meas. Instrum. 2008, 19, 171–179. [Google Scholar] [CrossRef]
- Wiklund, J. Ultrasound Doppler Based In-Line Rheometry-Development, Validation and Application; Lund University: Lund, Sweden, 2007; ISBN 9162870254. [Google Scholar]
Researcher | Measurement Technology | Drilling Fluid | Fluid Type | Temperature (°C) | Performance Criteria | Difference between Real-Time and Standard Viscometer | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Magalhães et al. [26] | TT-100 (online Couette viscometer) | Glycerin | Newtonian | 32 | μ | Error (%) | ||||||||||||
TT-100 | FANN 35A | 3.16 | ||||||||||||||||
16.3 | 15.8 | |||||||||||||||||
CMC solution | Non-Newtonian | 33 | K | n | MSE | R2 | ||||||||||||
TT-100 | FANN 35A | TT-100 | FANN 35A | 3.9365 | 0.9928 | |||||||||||||
2.72 | 3.24 | 0.46 | 0.44 | |||||||||||||||
Water-based mud | Non-Newtonian | 34 | K | n | MSE | R2 | ||||||||||||
TT-100 | FANN 35A | TT-100 | FANN 35A | 20.7916 | 0.9383 | |||||||||||||
1.85 | 4.20 | 0.48 | 0.37 | |||||||||||||||
Non-aqueous drilling fluid | non-Newtonian | 51 | K | n | MSE | R2 | ||||||||||||
TT-100 | FANN 35A | TT-100 | FANN 35A | 20.9649 | 0.9697 | |||||||||||||
0.07 | 0.17 | 1.00 | 0.85 | |||||||||||||||
Dotson et al. [29] | Online Couette viscometer | Oil-based drilling fluid | Non-Newtonian | - | Mean difference; 95% confidence interval; Standard deviation between Real-time and standard viscometer (dial readings) | - | ||||||||||||
600 rev/min | 300 rev/min | 100 rev/min | 6 rev/min | |||||||||||||||
0.6; [0.3,0.9]; 1 | 0.5; [0.3,0.7]; 0.7 | −0.1; [−0.2,0], 0.4; | −0.5; [−0.7,−0.4]; 0.4 | |||||||||||||||
Vajargah et al. [31] | Pipe Viscometer | Bentonite clay suspensions | Non-Newtonian | - | K | n | τ0 | MSE | R2 | |||||||||
Couette | Pipe | Couette | Pipe | Couette | Pipe | 1.9234 | 0.9362 | |||||||||||
0.06292 | 0.03438 | 0.789 | 0.8879 | 8.001 | 6.525 | |||||||||||||
Polymer-based | Non-Newtonian | - | K | n | τ0 | MSE | R2 | |||||||||||
Couette | Pipe | Couette | Pipe | Couette | Pipe | 0.6342 | 0.9976 | |||||||||||
1.900 | 2.430 | 0.4591 | 0.4197 | 0 | 0 | |||||||||||||
Synthetic-based drilling fluid | Non-Newtonian | - | K | n | τ0 | MSE | R2 | |||||||||||
Couette | Pipe | Couette | Pipe | Couette | Pipe | 1.5635 | 0.9943 | |||||||||||
0.1284 | 0.1753 | 0.8456 | 0.7912 | 1.736 | 2.924 | |||||||||||||
Gul et al. [32] | Pipe Viscometer | Oil- based mud | Non-Newtonian | 25 | K | n | τ0 | PV | YP | MSE | R2 | |||||||
Ofite 900 | Pipe | Ofite 900 | Pipe | Ofite 900 | Pipe | Ofite 900 | Pipe | Ofite 900 | Pipe | 2.5967 | 0.9939 | |||||||
0.31 | 0.28 | 0.75 | 0.77 | 0.51 | 1.29 | 45 | 46 | 9.5 | 10 | |||||||||
Oil- based mud | Non-Newtonian | 65.5 | K | n | τ0 | PV | YP | MSE | R2 | |||||||||
Ofite 900 | Pipe | Ofite 900 | Pipe | Ofite 900 | Pipe | Ofite 900 | Pipe | Ofite 900 | Pipe | 3.6923 | 0.9522 | |||||||
0.10 | 0.14 | 0.79 | 0.76 | 0.16 | 0.14 | 21 | 22 | 5.3 | 4.8 | |||||||||
Magalhães et al. [27] | Online Couette viscometer; Pipe viscometer | Glycerin 50% | Newtonian | 32 | μ | Error (%) | ||||||||||||
TT-100 | FANN 35A | Pipe | TT-100 | Pipe | ||||||||||||||
16.3 | 15.8 | 15.5 | 3.16 | 1.90 | ||||||||||||||
Glycerin 50% | Newtonian | 50 | μ | Error (%) | ||||||||||||||
TT-100 | FANN 35A | Pipe | TT-100 | Pipe | ||||||||||||||
9.1 | 8.6 | 8.2 | 5.81 | 4.65 | ||||||||||||||
0.25% CMC | Non-Newtonian | 30 | K | n | MSE | R2 | ||||||||||||
TT-100 | FANN 35A | Pipe | TT-100 | FANN 35A | Pipe | TT-100 | Pipe | TT-100 | Pipe | |||||||||
0.10 | 0.40 | 0.43 | 0.75 | 0.52 | 0.52 | 4.845 | 0.441 | 0.827 | 0.984 | |||||||||
0.25% CMC | Non-Newtonian | 50 | K | n | MSE | R2 | ||||||||||||
TT-100 | FANN 35A | Pipe | TT-100 | FANN 35A | Pipe | TT-100 | Pipe | TT-100 | Pipe | |||||||||
0.03 | 0.24 | 0.16 | 0.88 | 0.56 | 0.60 | 1.09 | 0.866 | 0.939 | 0.952 | |||||||||
1% CMC | Non-Newtonian | 33 | K | n | MSE | R2 | ||||||||||||
TT-100 | FANN 35A | Pipe | TT-100 | FANN 35A | Pipe | TT-100 | Pipe | TT-100 | Pipe | |||||||||
2.72 | 3.24 | 3.96 | 0.46 | 0.44 | 0.4 | 3.937 | 6.966 | 0.993 | 0.988 | |||||||||
1% CMC | Non-Newtonian | 50 | K | n | MSE | R2 | ||||||||||||
TT-100 | FANN 35A | Pipe | TT-100 | FANN 35A | Pipe | TT-100 | Pipe | TT-100 | Pipe | |||||||||
1.19 | 1.66 | 2.08 | 0.55 | 0.50 | 0.46 | 0.886 | 1.788 | 0.997 | 0.995 | |||||||||
Water-based drilling fluid | Non-Newtonian | 34 | K | n | MSE | R2 | ||||||||||||
TT-100 | FANN 35A | Pipe | TT-100 | FANN 35A | Pipe | TT-100 | Pipe | TT-100 | Pipe | |||||||||
1.85 | 4.2 | 3.55 | 0.48 | 0.37 | 0.38 | 20.79 | 12.27 | 0.939 | 0.964 | |||||||||
Water-based drilling fluid | Non-Newtonian | 50 | K | n | MSE | R2 | ||||||||||||
TT-100 | FANN 35A | Pipe | TT-100 | FANN 35A | Pipe | TT-100 | Pipe | TT-100 | Pipe | |||||||||
1.34 | 3.15 | 2.60 | 0.50 | 0.39 | 0.40 | 20.72 | 13.07 | 0.920 | 0.950 | |||||||||
Baoshuang et al. [43] | Pipe viscometer | Water-based drilling fluid | Non-Newtonian | - | AV | PV | Error (%) | |||||||||||
API | Pipe | API | Pipe | AV | PV | |||||||||||||
9.50 | 9.41 | 4.60 | 4.82 | 0.947 | 4.782 | |||||||||||||
Haoyu et al. [44] | altered-diameter shaped pipe viscometer | Drilling fluid | Non-Newtonian | - | AV | PV | YP | n | K | Error (%) | ||||||||
API | Pipe | API | Pipe | API | Pipe | API | Pipe | API | Pipe | AV | PV | YP | ||||||
12.5 | 12.37 | 9 | 8.85 | 3.5 | 3.47 | 0.64 | 0.63 | 0.2 | 0.01 | 4.783 | 1.67 | 0.857 |
Researcher | Drilling Fluid | Input Parameters | AI Technique | Number of Data Points | Performance Criteria | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elkatatny et al. [60] | NaCl polymer mud | Marsh funnel viscosity, solid content; mud weight | ANN | 3000 | 300 | 600 | PV | AV | τ0 | n | K | |||||||||||
R2 | AAE | R2 | AAE | R2 | AAE | R2 | AAE | R2 | AAE | R2 | AAE | R2 | AAE | |||||||||
0.974 | 3.27 | 0.978 | 3.51 | 0.977 | 4.7 | 0.9792 | 3.4 | 0.8998 | 3.67 | 0.9487 | 2.1 | 0.8865 | 0.89 | |||||||||
Elkatatny et al. [61,62] | invert emulsion-based mud | Marsh funnel viscosity, solid content; mud weight | ANN | 9000 | 300 | 600 | n | K | AV | PV | τ0 | |||||||||||
R2 | AAE | R2 | AAE | R2 | AAE | R2 | AAE | R2 | AAE | R2 | AAE | AAE | ||||||||||
0.8981 | 3.48 | 0.9235 | 3.7 | 0.954 | 1.2 | 0.9205 | 4.7 | 0.9235 | 3.7 | 0.9452 | 4.2 | 3.0 | ||||||||||
Abdelgawad et al. [63] | - | Marsh funnel viscosity, solid content; mud weight | SaDe-ANN | 2000 | AV | PV | τ0 | n | ||||||||||||||
R2 | AAPE | R2 | AAPE | R2 | AAPE | R2 | AAPE | |||||||||||||||
0.945 | 5.39% | 0.94 | 3.91% | 0.928 | 4.71% | 0.922 | 3.26% | |||||||||||||||
Elkatatny et al. [64] | NaCl polymer mud | Marsh funnel viscosity, solid content; mud weight | ANN | 1000 | 300 | 600 | n | K | PV | AV | ||||||||||||
R2 | AAPE | R2 | AAE | R2 | AAE | R2 | AAE | R2 | AAE | R2 | AAE | |||||||||||
0.99 | 3.46% | 0.99 | 3.43% | 0.96 | 3.25% | 0.92 | 6.50% | 0.98 | 6.00% | 0.99 | 3.96% | |||||||||||
Al-Khdheeawi et al. [65] | Ferro Chrome Lignosulfonate mud; Salt Saturated mud | Marsh funnel viscosity, mud weight | ANN | 142 | AV | |||||||||||||||||
R2 | AAE | |||||||||||||||||||||
0.981 | 0.109 | |||||||||||||||||||||
Elkatatny et al. [66] | NaCl polymer mud | Marsh funnel viscosity, solid content; mud weight | SaDe-ANN | 900 | PV | τ0 | n | K | AV | |||||||||||||
R2 | AAPE | R2 | AAPE | R2 | AAPE | R2 | AAPE | R2 | AAPE | |||||||||||||
0.96 | 8.60% | 0.95 | 3.50% | 0.94 | 4.00% | 0.91 | 8.40% | 0.96 | 5.80% | |||||||||||||
Gowida et al. [67] | CaCl2 Brine-Based | Marsh funnel viscosity, mud weight | ANN | 515 | PV | YP | AV | n | K | |||||||||||||
R | AAPE | R | AAPE | R | AAPE | R | AAPE | R | AAPE | |||||||||||||
0.98 | 6.1 | 0.97 | 3.9 | 0.99 | 3.2 | 0.98 | 2.4 | 0.99 | 3.6 | |||||||||||||
Alsabaa et al. [68,69] | Oil-based mud | Marsh funnel viscosity, mud weight | ANN | 369 | PV | YP | n | AV | 300 | 600 | ||||||||||||
R | AAPE | R | AAPE | R | AAPE | R | AAPE | R | AAPE | R | AAPE | |||||||||||
0.95 | 7.97 | 0.9 | 6.03 | 0.91 | 4.81 | 0.94 | 6.9 | 0.92 | 6.74 | 0.94 | 6.95 | |||||||||||
Alsabaa et al. [70] | Invert emulsion mud | Marsh funnel viscosity, mud weight | ANFIS | 741 | PV | YP | n | AV | 300 | 600 | ||||||||||||
R | AAPE | R | AAPE | R | AAPE | R | AAPE | R | AAPE | R | AAPE | |||||||||||
0.91 | 5.66 | 0.91 | 3.38 | 0.94 | 1.69 | 0.97 | 2.59 | 0.93 | 3.47 | 0.97 | 2.59 | |||||||||||
Gomaa et al. [71] | High-overbalanced water-based mud | Marsh funnel viscosity, mud weight | ANN | 3000 | PV | YP | n | AV | 300 | 600 | ||||||||||||
R | AAPE | R | AAPE | R | AAPE | R | AAPE | R | AAPE | R | AAPE | |||||||||||
0.94 | 7.7 | 0.91 | 3.03 | 0.94 | 2.5 | 0.96 | 3.96 | 0.97 | 3.7 | 0.96 | 4.77 | |||||||||||
Bispo et al. [72] | Water-based mud | temperature xanthan gum, bentonite and barite | ANN | 1017 | AV | |||||||||||||||||
R2 | MSE | |||||||||||||||||||||
0.9486 | 7.73 |
Technique | Working Principle | Advantages | Limitations | Cost | Notable Reference |
---|---|---|---|---|---|
Online Couette viscometer | Concentric cylinder (Couette flow) | Similar to API standards | Solids less than 1 mm; solids settling; easily blocked; frequent maintenance | High | [21,22,23,24,25,26,27,29] |
Pipe viscometer | Pipe pressure difference under various flow rates | Automation; not susceptible to blockage; obtains other parameters by adding other sensors to the pipe | Large size | High | [2,27,31,32,33,35,36] |
Based on Marsh funnel | Marsh funnel time, mud weight, solid content | Simple test tool | Manual test, complex theoretical model | Low | [19,51,63,64,65,66,67,68,52,53,54,55,56,60,61,62] |
Acoustic technology | Acoustic characteristics of sound waves propagating in drilling fluid | Simple installation; not susceptible to blockage; density and viscosity can be measured | Manual calibration; complex theoretical model | Medium | [73,74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Zhang, D.; Gao, H.; Hu, Y.; Duan, L. Real-Time Measurement of Drilling Fluid Rheological Properties: A Review. Sensors 2021, 21, 3592. https://doi.org/10.3390/s21113592
Liu N, Zhang D, Gao H, Hu Y, Duan L. Real-Time Measurement of Drilling Fluid Rheological Properties: A Review. Sensors. 2021; 21(11):3592. https://doi.org/10.3390/s21113592
Chicago/Turabian StyleLiu, Naipeng, Di Zhang, Hui Gao, Yule Hu, and Longchen Duan. 2021. "Real-Time Measurement of Drilling Fluid Rheological Properties: A Review" Sensors 21, no. 11: 3592. https://doi.org/10.3390/s21113592