High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Paired Datasets of PlanetScope Imagery and Corresponding Red Tide Maps
2.3. Red Tide Detection Methods
2.4. Performance Assessment
3. Results
3.1. Visual Inspection and Spectral Analysis
3.2. Threshold Determination of RTI
3.3. U-Net Model for Deep Red Tide Learning
3.4. Performance Comparison of RTI and U-Net
4. Discussion
4.1. PlanetScope Product
4.2. Ground Truth Red Tide Map
4.3. Red Tide Extent
4.4. Patch Selection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.K.; Park, T.G.; Park, Y.T.; Lim, W.A. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 2013, 30, S3–S14. [Google Scholar] [CrossRef]
- National Institute of Fisheries Science (NIFS). Harmful Algal Blooms in Korean Coastal Waters; National Institute of Fisheries Science: Busan, Korea, 2015.
- Gobler, C.; Gobler, C.J.; Anderson, O.R.; Berry, D.L.; Burson, A.; Koch, F.; Rodgers, B.; Koza-Moore, L.; Goleski, J.; Allam, B.; et al. Characterization, dynamics, and ecological impacts of harmful Cochlodinium polykrikoides blooms on eastern Long Island, NY, USA. Harmful Algae 2008, 7, 293–307. [Google Scholar] [CrossRef]
- Jeong, H.J.; Lim, A.S.; Lee, K.; Lee, M.J.; Seong, K.A.; Kang, N.S.; Jang, S.H.; Lee, K.H.; Lee, S.Y.; Kim, M.O. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors. Algae 2017, 32, 101–130. [Google Scholar] [CrossRef] [Green Version]
- Forecast·Breaking News of the National Institute of Fisheries Science (NIFS). Available online: http://www.nifs.go.kr/redtideInfo (accessed on 10 June 2021).
- Tester, P.A.; Stumpf, R.P.; Steidinger, K.A. Ocean color imagery: What is the minimum detection level for Gymnodinium breve blooms. Harmful Algae 1998, 149–151. [Google Scholar]
- Stumpf, R.P.; Culver, M.E.; Tester, P.A.; Tomlinson, M.; Kirkpatrick, G.J.; Pederson, B.A.; Truby, E.; Ransibrahmanakul, V.; Soracco, M. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae 2003, 2, 147–160. [Google Scholar] [CrossRef]
- Tomlinson, M.C.; Stumpf, R.P.; Ransibrahmanakul, V.; Truby, E.W.; Kirkpatrick, G.J.; Pederson, B.A.; Gabriel, A.V.; Heil, C.A. Evaluation of the use of SeaWiFS imagery for detecting Karenia brevis harmful algal blooms in the eastern Gulf of Mexico. Remote Sens. Environ. 2004, 91, 293–303. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Shanmugam, P. Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia Coastal waters. Remote Sens. Environ. 2006, 103, 419–437. [Google Scholar] [CrossRef]
- Hu, C.; Muller-Karger, F.E.; Taylor, C.J.; Carder, K.L.; Kelble, C.; Johns, E.; Heil, C.A. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sens. Environ. 2005, 97, 311–321. [Google Scholar] [CrossRef]
- Moradi, M.; Kabiri, K. Red tide detection in the Strait of Hormuz (east of the Persian Gulf) using MODIS fluorescence data. Int. J. Remote Sens. 2012, 33, 1015–1028. [Google Scholar] [CrossRef]
- Zhao, J.; Temimi, M.; Ghedira, H. Characterization of harmful algal blooms (HABs) in the Arabian Gulf and the Sea of Oman using MERIS fluorescence data. ISPRS J. Photogramm. Remote Sens. 2015, 101, 125–136. [Google Scholar] [CrossRef]
- Amin, R.; Zhou, J.; Gilerson, A.; Gross, B.; Moshary, F.; Ahmed, S. Novel optical techniques for detecting and classifying toxic dinoflagellate Karenia brevis blooms using satellite imagery. Opt. Express 2009, 17, 9126–9144. [Google Scholar] [CrossRef]
- Suh, Y.S.; Jang, L.H.; Lee, N.K.; Ishizaka, J. Feasibility of red tide detection around Korean waters using satellite remote sensing. Fisher Aqua. Sci. 2004, 7, 148–162. [Google Scholar] [CrossRef] [Green Version]
- Wynne, T.T.; Stumpf, R.P.; Tomlinson, M.C.; Warner, R.A.; Tester, P.A.; Dyble, J.; Fahnenstiel, G.L. Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. Int. J. Remote Sens. 2008, 29, 3665–3672. [Google Scholar] [CrossRef]
- Tomlinson, M.C.; Wynne, T.T.; Stumpf, R.P. An evaluation of remote sensing techniques for enhanced detection of the toxic dinoflagellate, Karenia brevis. Remote Sens. Environ. 2009, 113, 598–609. [Google Scholar] [CrossRef]
- Cannizzaro, J.P.; Carder, K.L.; Chen, F.R.; Heil, C.A.; Vargo, G.A. A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data. Cont. Shelf Res. 2008, 28, 137–158. [Google Scholar] [CrossRef]
- Tao, B.; Mao, Z.; Lei, H.; Pan, D.; Shen, Y.; Bai, Y.; Zhu, Q.; Li, Z. A novel method for discriminating Prorocentrum donghaiense from diatom blooms in the East China Sea using MODIS measurements. Remote Sens. Environ. 2015, 158, 267–280. [Google Scholar] [CrossRef]
- Son, Y.B.; Kang, Y.H.; Ryu, J.H.; Jeong, J.C. Monitoring red tide in South Sea of Korea (SSK) using the Geostationary Ocean Color Imager (GOCI). Korean J. Remote Sens. 2012, 28, 531–548. [Google Scholar]
- Lou, X.; Hu, C. Diurnal changes of a harmful algal bloom in the East China Sea: Observations from GOCI. Remote Sens. Environ. 2014, 140, 562–572. [Google Scholar] [CrossRef]
- Kim, Y.; Byun, Y.; Kim, Y.; Eo, Y. Detection of Cochlodinium polykrikoides red tide based on two-stage filtering using MODIS data. Desalination 2009, 249, 1171–1179. [Google Scholar] [CrossRef]
- Shin, J.S.; Min, J.E.; Ryu, J.-H. A study on red tide surveillance system around the Korean coastal waters using GOCI. Korean J. Remote Sens. 2017, 33, 213–230. [Google Scholar]
- Dierssen, H.M.; Kudela, R.M.; Ryan, J.P.; Zimmerman, R.C. Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnol. Oceanogr. 2006, 51, 2646–2659. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, H.; Tanaka, A.; Iwataki, M.; Touke, Y.; Siswanto, E.; Tan, C.K.; Ishizaka, J. Optical properties of the red tide in Isahaya Bay, southwestern Japan: Influence of chlorophyll a concentration. J. Oceanogr. 2008, 64, 511–523. [Google Scholar] [CrossRef]
- Shin, J.; Kim, K.; Ryu, J.H. Red Tide Detection through Image Fusion of GOCI and Landsat OLI. Korean J. Remote Sens. 2018, 34, 377–391. [Google Scholar]
- Shin, J.; Kim, K.; Son, Y.B.; Ryu, J.H. Synergistic effect of multi-sensor Data on the detection of Margalefidinium polykrikoides in the South Sea of Korea. Remote Sens. 2019, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Sakuno, Y.; Maeda, A.; Mori, A.; Ono, S.; Ito, A. A Simple Red Tide Monitoring Method using Sentinel-2 Data for Sustainable Management of Brackish Lake Koyama-ike, Japan. Water 2019, 11, 1044. [Google Scholar] [CrossRef] [Green Version]
- Khalili, M.H.; Hasanlou, M. Harmful Algal Blooms Monitoring Using SENTINEL-2 Satellite Images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 609–613. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Chova, L.; Tuia, D.; Moser, G.; Camps-Valls, G. Multimodal classification of remote sensing images: A review and future directions. Proc. IEEE 2015, 103, 1560–1584. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 2014, 31, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recogn. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Muhlbauer, A.; McCoy, I.L.; Wood, R. Climatology of stratocumulus cloud morphologies: Microphysical properties and radiative effects. Atmos. Chem. Phys. 2014, 14, 6695–6716. [Google Scholar] [CrossRef] [Green Version]
- Landschützer, P.; Gruber, N.; Bakker, D.C.; Schuster, U.; Nakaoka, S.I.; Payne, M.R.; Sasse, T.; Zeng, J. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 2013, 10, 7793–7815. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.P.; Zhang, L.F.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609. [Google Scholar] [CrossRef] [Green Version]
- Racah, E.; Beckham, C.; Maharaj, T.; Kahou, S.E.; Pal, C. ExtremeWeather: A large-scale climate dataset for semisupervised detection, localization, and understanding of extreme weather events. Adv. Neural Inform. Process. Syst. 2016, 30, 3405–3416. [Google Scholar]
- Lu, W.; Su, H.; Yang, X.; Yan, X.H. Subsurface temperature estimation from remote sensing data using a clustering-neural network method. Remote Sens. Environ. 2019, 229, 213–222. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Zheng, G.; Ren, Y.; Zhang, S.; Liu, Y.; Gao, L.; Liu, Y.; Zhang, B.; Wang, F. Deep-learning-based information mining from ocean remote-sensing imagery. Natl. Sci. Rev. 2020, 7, 1584–1605. [Google Scholar] [CrossRef]
- Li, R.; Liu, W.; Yang, L.; Sun, S.; Hu, W.; Zhang, F.; Li, W. Deepunet: A deep fully convolutional network for pixel-level sea-land segmentation. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2018, 11, 3954–3962. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Cheng, W.; Hall, L.O.; Goldgof, D.B.; Soto, I.M.; Hu, C. Automatic red tide detection from MODIS satellite images. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009. [Google Scholar]
- Lee, M.S.; Park, K.A.; Chae, J.; Park, J.E.; Lee, J.S.; Lee, J.H. Red tide detection using deep learning and high-spatial resolution optical satellite imagery. Int. J. Remote Sens. 2020, 41, 5838–5860. [Google Scholar] [CrossRef]
- Shanmugam, P.; Ahn, Y.H.; Ram, P.S. SeaWiFS sensing of hazardous algal blooms and their underlying mechanisms in shelf-slope waters of the Northwest Pacific during summer. Remote Sens. Environ. 2008, 112, 3248–3270. [Google Scholar] [CrossRef]
- Shin, J.; Kim, S.M.; Ryu, J.H. Machine learning approaches for quantifying Margalefidinium polykrikoides bloom from airborne hyperspectral imagery. J. Coast. Res. 2019, 90, 202–207. [Google Scholar]
- Kim, S.M.; Shin, J.; Baek, S.; Ryu, J.-H. U-Net convolutional neural network model for deep red tide learning using GOCI. J. Coast. Res. 2019, 90, 302–309. [Google Scholar] [CrossRef]
- Yoon, H.J.; Nam, K.W.; Cho, H.G.; Beun, H.K. Study on monitoring and prediction for the red tide occurrence in the middle coastal area in the South Sea of Korea II. The relationship between the red tide occurrence and the oceanographic factors. J. Korea Instit. Inf. Commun. Eng. 2004, 8, 938–945. [Google Scholar]
- Planet. Planet Imagery Product Specification. 2018. Available online: https://assets.planet.com/docs/Combined-Imagery-Product-Spec-Dec-2018.pdf (accessed on 10 June 2021).
- Oh, S.-Y.; Kim, D.-H.; Yoon, H.-J. Application of unmanned aerial image application red tide monitoring on the aquaculture fields in the coastal waters of the South Sea, Korea. Korean J. Remote Sens. 2016, 32, 87–96. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Shanmugam, P.; Ryu, J.-H.; Jeong, J.C. Satellite detection of harmful algal bloom occurrences in Korean waters. Harmful Algae 2006, 5, 213–231. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006; 225p. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012; 245p. [Google Scholar]
- Kohavi, R. Glossary of terms. Mach. Learn. 1998, 30, 127–132. [Google Scholar]
- Park, J.G.; Jeong, M.K.; Lee, J.A.; Cho, K.J.; Kwon, O.S. Diurnal vertical migration of a harmful dinoflagellate, Cochlodinium polykrikoides (Dinophyceae), during a red tide in coastal waters of Namhae Island, Korea. Phycologia 2001, 40, 292–297. [Google Scholar] [CrossRef]
- Noh, J.H.; Kim, W.; Son, S.H.; Ahn, J.H.; Park, Y.J. Remote quantification of Cochlodinium polykrikoides blooms occurring in the East Sea using geostationary ocean color imager (GOCI). Harmful Algae 2018, 73, 129–137. [Google Scholar] [CrossRef]
Mission Characteristics | Sun-Synchronous Orbit |
---|---|
Orbit altitude | 475 km |
Equator crossing time | 9:30–11:30 am (local solar time) |
Spectral bands | Blue: 455–515 nm Green: 500–590 nm Red: 590–670 nm NIR: 780–860 nm |
Spatial resolution | 3 m |
Product size | 24 × 7 km2 |
Date | July 2018 | August 2018 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 1 | 2 | |
Number of available images | 4 | 2 | 2 | 3 | 0 | 6 | 2 | 4 | 8 | 5 |
Total | 36 |
Left Side of U-Net | Right Side of U-Net | ||
---|---|---|---|
Blocks | Layers per Block | Blocks | Layers per Block |
Input | Input layer (32 × 32 × 4) | Output | Ouput layer Softmax layer |
Encoder-1 to 4 | Conv (3 × 3)/ReLU Conv (3 × 3)/ReLU Max pooling | Decoder-5 | Conv (1 × 1) Conv (3 × 3)/ReLU Conv (3 × 3)/ReLU Depth concatenation |
Decoder-2 to 4 | UpConv (2 × 2)/ReLU Conv (3 × 3)/ReLU Conv (3 × 3)/ReLU Depth concatenation | ||
Encoder-5 | Conv (3 × 3)/ReLU Conv (3 × 3)/ReLU | Decoder-1 | UpConv (2 × 2)/ReLU |
Red Tide Index in Ground Truth | |||
---|---|---|---|
True (mr) | False (nmr) | ||
Red tide index in the predicted | True (MR) | (1) True positive | (3) False positive |
False (nMR) | (2) False negative | (4) True negative |
Random Sampling | Pixel Ratio | Patches of Test Datasets | 36 PlanetScope Images | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Non-Red Tide Pixel | Red Tide Pixel | Accu. | Sens. | Prec. | F-Measure | Accu. | Sens. | Prec. | F-Measure | ||
U-Net #1 | Yes | 0.45 | 0.55 | 0.61 | 0.73 | 0.62 | 0.67 | 0.82 | 0.69 | 0.05 | 0.08 |
U-Net #2 | No | 0.45 | 0.55 | 0.60 | 0.74 | 0.61 | 0.67 | 0.77 | 0.76 | 0.03 | 0.06 |
U-Net #3 | Yes | 0.66 | 0.34 | 0.65 | 0.37 | 0.48 | 0.42 | 0.94 | 0.39 | 0.09 | 0.10 |
U-Net #4 | No | 0.66 | 0.34 | 0.71 | 0.61 | 0.61 | 0.61 | 0.88 | 0.60 | 0.07 | 0.11 |
Accuracy | Sensitivity | Precision | F-Measure | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LE | ME | HE | LE | ME | HE | LE | ME | HE | LE | ME | HE | |
RTI | 0.90 | 0.75 | 0.87 | 0.50 | 0.42 | 0.50 | 0.03 | 0.09 | 0.15 | 0.06 | 0.14 | 0.23 |
U-Net#4 | 0.87 | 0.79 | 0.89 | 0.61 | 0.42 | 0.66 | 0.04 | 0.16 | 0.21 | 0.06 | 0.22 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.; Jo, Y.-H.; Ryu, J.-H.; Khim, B.-K.; Kim, S.M. High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery. Sensors 2021, 21, 4447. https://doi.org/10.3390/s21134447
Shin J, Jo Y-H, Ryu J-H, Khim B-K, Kim SM. High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery. Sensors. 2021; 21(13):4447. https://doi.org/10.3390/s21134447
Chicago/Turabian StyleShin, Jisun, Young-Heon Jo, Joo-Hyung Ryu, Boo-Keun Khim, and Soo Mee Kim. 2021. "High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery" Sensors 21, no. 13: 4447. https://doi.org/10.3390/s21134447
APA StyleShin, J., Jo, Y.-H., Ryu, J.-H., Khim, B.-K., & Kim, S. M. (2021). High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery. Sensors, 21(13), 4447. https://doi.org/10.3390/s21134447