Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future
Abstract
:1. Introduction
1.1. Why Graph-Based Deep Learning for Medical Diagnosis and Analysis?
1.1.1. Brain Activity Analysis
1.1.2. Brain Surface Representation
1.1.3. Segmentation and Labeling of Anatomical Structures
1.2. Scope of Review
1.3. Contribution and Organisation
- We identify a number of challenges facing traditional deep learning when applied to medical signal analysis, and highlight the contributions of graph neural networks to overcome these.
- We introduce and discuss diverse graph frameworks proposed for medical diagnosis and their specific applications. We cover work for biomedical imaging applications using graph networks combined with deep learning techniques.
- We summarise the current challenges encountered by graph-based deep learning and propose future directions in healthcare based on currently observed trends and limitations.
2. Graph Neural Networks Background
2.1. Graph Representation
2.2. Graph Neural Network Architectures
2.2.1. ChebNet
2.2.2. Graph Convolutional Network
2.2.3. GraphSAGE
2.2.4. Graph Isomorphism Network
2.2.5. Graph Networks with Attention Mechanisms
2.3. Graph Neural Networks with Temporal Dependency
- RNN-based approaches: These methods capture spatio-temporal dependencies by using graph convolutions to filter inputs and hidden states before passing them to a recurrent unit.
- CNN-based approaches: These approaches tackle spatio–temporal graphs in a non-recursive manner. They use temporal connections to extend static graph structures so that they can apply traditional GNNs on the extended graphs.
2.3.1. RNN-Based Approaches
2.3.2. CNN-Based Approaches
3. Case Studies of GNN for Medical Diagnosis and Analysis
3.1. Functional Connectivity Analysis
Authors | Year | Modality | Application | Dataset |
---|---|---|---|---|
Li et al. [17] † | 2020 | t-fMRI | Classification: Autism disorder | ASD Biopoint Task (Yale Child Study Center [16]) (2 classes) |
Li et al. [61] | 2020 | t-fMRI | Classification: Autism disorder | Biopoint [62] (2 classes) |
Huang et al. [18] | 2020 | rs-fMRI | Classification: Autism disorder | ABIDE [63] (2 classes) |
Rakhimberdina et al. [64] | 2020 | fMRI | Classification: Autism disorder | ABIDE [63] (2 classes) |
Li et al. [65] | 2020 | t-fMRI | Classification: Autism disorder | Yale Child Study Center [16] (2 classes) |
Jiang et al. [66] | 2020 | fMRI | Classification: Autism disorder | ABIDE [63] (2 classes) |
Li et al. [16] | 2019 | t-fMRI | Classification: Autism disorder | Yale Child Study Center (private) (2 classes) |
Kazi et al. [67] | 2019 | rs-fMRI | Classification: Autism disorder | ABIDE [63] (2 classes) |
Yao et al. [68] | 2019 | rs-fMRI | Classification: Autism disorder | ABIDE [63] (2 classes) |
Anirudh et al. [69] | 2019 | rs-fMRI | Classification: Autism disorder | ABIDE [63] (2 classes) |
Rakhimberdina and Murata [40] | 2019 | fMRI | Classification: Autism disorder | ABIDE [63] (2 classes) |
Ktena et al. [70] | 2018 | rs-fMRI | Classification: Autism disorder | ABIDE [63] (2 classes) |
Parisot et al. [15] | 2018 | rs-fMRI | Classification: Autism disorder | ABIDE [63] (2 classes) |
Ktena et al. [71] | 2017 | rs-fMRI | Classification: Autism disorder | ABIDE [63] (2 classes) |
Parisot et al. [72] | 2017 | rs-fMRI | Classification: Autism disorder | ABIDE [63] (2 classes) |
Rakhimberdina and Murata [40] | 2019 | fMRI | Classification: Schizophrenia | COBRE [73] (2 classes) |
Rakhimberdina and Murata [40] | 2019 | rs-fMRI | Classification: Attention deficit disorder | ADHD-200 [74] (2 classes) |
Yao et al. [68] | 2019 | rs-fMRI | Classification: Attention deficit disorder | ADHD-200 [74] (2 classes) |
Yao et al. [60] 🟉 | 2020 | rs-fMRI | Classification: Major depressive disorder | MDD [75] (2 classes) |
Yang et al. [44] † | 2019 | fMRI/sMRI | Classification: Bipolar disorder | BD (private) |
Li et al. [61] | 2020 | rs-fMRI | Classification: Brain response stimuli | HCP 900 [76] (7 classes) |
Zhang et al. [5] | 2019 | fMRI | Classification: Brain response stimuli | HCP S1200 [76] (21 classes) |
Guo et al. [77] | 2017 | MEG | Classification: Brain response stimuli | Visual stimulus (private) (2 classes) |
3.1.1. Autism Spectrum Disorder
3.1.2. Schizophrenia
3.1.3. Major Depressive Disorder
3.1.4. Bipolar Disorder
3.1.5. Brain Responses to Stimulus
3.2. Electrical-Based Analysis
Authors | Year | Modality | Application | Dataset |
---|---|---|---|---|
Jang et al. [81] | 2019 | EEG | Classification: Affective mental states | DEAP [82] (40 classes) |
Jang et al. [83] | 2018 | EEG | Classification: Affective mental states | DEAP [82] (40 classes) |
Mathur et al. [84] | 2020 | EEG | Classification: Seizure detection | University of Bonn [85] (2 classes) |
Wang et al. [59] 🟉 | 2020 | EEG | Classification: Seizure detection | University of Bonn [85] (2 classes), SSW-EEG (private) (2 classes) |
Covert et al. [86] 🟉 | 2019 | EEG | Classification: Seizure detection | Cleveland Clinic Foundation (private) (2 classes) |
Lian et al. [42] † | 2020 | iEEG | Regression: Seizure prediction (preictal) | Freiburg iEEE (EPILEPSIAE) [87] |
Wagh et al. [88] | 2020 | EEG | Classification: Abnormal EEG | TUH EEG corpus [89], MPI LEMON [90] (2 classes) |
Wang et al. [43] † | 2020 | ECG | Classification: Heart abnormality | HFECGIC [91] (34 classes) |
Sun et al. [92] | 2020 | EGM | Classification: Heart abnormality | EGM open-heart surgery [93] (2 classes) |
Jia et al. [45] 🟉† | 2020 | PSG | Classification: Sleep staging | MASS-SS3 [94] (5 classes) |
3.2.1. Affective Mental States
3.2.2. Epilepsy
3.2.3. Abnormal EEG in Neurological Disorders
3.2.4. Heart Abnormalities
3.2.5. Sleep Staging
3.3. Anatomical Structure Analysis (Classification and Prediction)
Authors | Year | Modality | Application | Dataset |
---|---|---|---|---|
Ma et al. [97] † | 2020 | MRI | Classification: Alzheimer’s disease | ADNI [98] (2 classes) |
Huang et al. [99] | 2020 | MRI/fMRI | Classification: Alzheimer’s disease | ADNI [100] (3 classes) |
Huang et al. [18] | 2020 | MRI | Classification: Alzheimer’s disease | ADNI [100] (3 classes), TADPOLE [101] (3 classes) |
Yu et al. [102] | 2020 | MRI | Classification: Alzheimer’s disease/MCI | ADNI [100] (3 classes) |
Gopinath et al. [20] | 2020 | MRI | Classification: Alzheimer’s disease | ADNI [100] (2 classes) |
Zhao et al. [103] | 2019 | MRI | Classification: Alzheimer’s disease/MCI | ADNI [100] (2 classes) |
Wee et al. [104] | 2019 | MRI | Classification: Alzheimer’s disease | ADNI [100] (2 classes), Asian cohort (private) (2 classes) |
Kazi et al. [67] | 2019 | MRI | Classification: Alzheimer’s disease | TADPOLE [101] (3 classes) |
Song et al. [105] | 2019 | MRI | Classification: Alzheimer’s disease | ADNI [100] (4 classes) |
Gopinath et al. [36] | 2019 | MRI | Classification: Alzheimer’s disease | ADNI [100] (2 classes) |
Guo et al. [106] | 2019 | PET | Classification: Alzheimer’s disease | ADNI [107] (2/3 classes) |
Parisot et al. [15] | 2018 | MRI | Classification: Alzheimer’s disease | ADNI [100] (3 classes) |
Parisot et al. [72] | 2017 | MRI | Classification: Alzheimer’s disease | ADNI [100] (3 classes) |
Xing et al. [53] 🟉 | 2019 | T1WI/fMRI | Classification: Alzheimer’s disease/EMCI | ADNI [98] (2 classes) |
Zhang et al. [108] | 2018 | sMRI/DTI | Classification: Parkinson’s disease | PPMI [109] (2 classes) |
McDaniel and Quinn [110] † | 2019 | sMRI/dMRI | Classification: Parkinson’s disease | PPMI [109] (2 classes) |
Zhang et al. [47] † | 2020 | sMRI/dMRI | Classification: Parkinson’s disease | PPMI [109] (2 classes) |
Yang et al. [37] | 2019 | MRI | Classification: Brain abnormality | Brain MRI images (private) (2 classes) |
Wang et al. [111] | 2020 | CT | Classification: COVID-19 detection | Chest CT scans (private) (2 classes) |
Yu et al. [112] | 2020 | CT | Classification: COVID-19 detection | Hospital of Huai’an City (private) (2 classes) |
Wang et al. [113] | 2021 | CT | Classification: Tuberculosis | Chest CT scans (private) (2 classes) |
Hou et al. [114] † | 2021 | X-ray | Classification: Chest phatologies | IU X-ray [115] (14 classes), MIMIC-CXR [116] (14 classes) |
Zhang et al. [117] † | 2020 | X-ray | Classification: Chest phatologies | IU-RR [115] (20 classes) |
Chen et al. [118] | 2020 | X-ray | Classification: Chest phatologies | ChestX-ray14 [119] (14 classes), CheXpert [120] (14 classes) |
Zhang et al. [121] | 2021 | X-ray | Classification: Breast Cancer | mini-MIAS (mammogram) [122] (6 classes) |
Du et al. [123] | 2019 | X-ray | Classification: Breast cancer | INbreast (full field digital mammogram) [124] (2 classes) |
Yin et al. [125] | 2019 | US | Classification: Kidney disease | Children’s Hospital of Philadelphia (private) (2 classes) |
Liu et al. [126] | 2020 | MRI | Regression: Relative brain age | Preterm MRI (private) |
Gopinath et al. [20] | 2020 | MRI | Regression: Relative brain age | ADNI [100] |
Gopinath et al. [36] | 2019 | MRI | Regression: Relative brain age | ADNI [100] |
Chen et al. [127] | 2020 | DMRI | Regression: Brain data | BCP [128] |
Kim et al. [129] | 2019 | DMRI | Regression: Brain data | DMRI neonate (private) |
Hong et al. [130] | 2019 | DMRI | Regression: Brain data | DMRI infant (private) |
Hong et al. [7] | 2019 | DMRI | Regression: Brain data | HCP [131] |
Hong et al. [132] | 2019 | DMRI | Regression: Brain data | HCP [131] |
Cheng et al. [133] | 2020 | MRF | Regression: Brain data | 3D MRF (private) |
3.3.1. Alzheimer’s Disease
3.3.2. Parkinson’s Disease
3.3.3. Brain Abnormality
3.3.4. Coronavirus 2 (SARS-CoV-2 or COVID-19)
3.3.5. Tuberculosis
3.3.6. Chest Pathologies
3.3.7. Breast Cancer
3.3.8. Kidney Disease
3.3.9. Relative Brain Age
3.3.10. Brain Data Prediction
3.4. Anatomical Structure Analysis (Segmentation)
Authors | Year | Modality | Application | Dataset |
---|---|---|---|---|
Wolterink et al. [137] | 2019 | CTA | Segmentation: Coronary artery | Coronary Artery Stenoses Detection [138] |
Zhai et al. [139] | 2019 | CT | Segmentation: Pulmonary artery-vein | Sun Yat-sen University Hospital (private) |
Noh et al. [24] | 2020 | FA / Fundus | Segmentation: Retinal vessels | Fundus and FA (private), RITE A/V [140] |
Shin et al. [141] | 2019 | RGB/FA/XRA | Segmentation: Retinal vessels | DRIVE [142], STARE [143], CHASE_DB1 [144], HRF [145] |
Chen et al. [146] | 2020 | MRA | Segmentation: Intracranial arteries | MRA [147], UNC [148] |
Yao et al. [149] | 2020 | CTA | Segmentation: Head and neck vessels | Head and neck CTA (private) |
Lyu et al. [150] | 2021 | MRI | Segmentation: Cerebral cortex | NORA-pediatric [151], HCP-adult [152] |
Gopinath et al. [23] | 2020 | MRI | Segmentation: Cerebral cortex | MindBoggle [153] |
Gopinath et al. [20] | 2020 | MRI | Segmentation: Cerebral cortex | MindBoggle [153] |
Hao et al. [22] | 2020 | T1WI | Segmentation: Cerebral cortex | University of California Berkeley Brain Imaging Center (private) |
He et al. [154] † | 2020 | MRI | Segmentation: Cerebral cortex | MindBoggle [153] |
Gopinath et al. [155] | 2019 | MRI | Segmentation: Cerebral cortex | MindBoggle [153] |
Wu et al. [21] | 2019 | MRI | Segmentation: Cerebral cortex | Neonatal brain surfaces (private) |
Parvathaneni et al. [156] | 2019 | T1WI | Segmentation: Cerebral cortex | Cortical surface (private) |
Zhao et al. [19] | 2019 | MRI | Segmentation: Cerebral cortex | Infant brain MRI (private) |
Cucurull et al. [157] † | 2018 | MRI | Segmentation: Cerebral cortex | HPC mesh [76,158] |
Selvan et al. [8] | 2020 | CT | Segmentation: Pulmonary airway | Danish Lung Cancer Screening trial [159] |
Juarez et al. [41] | 2019 | CT | Segmentation: Pulmonary airway | Danish Lung Cancer Screening trial [159] |
Selvan et al. [160] | 2018 | CT | Segmentation: Pulmonary airway | Danish Lung Cancer Screening trial [159] |
Yan et al. [161] | 2019 | MRI | Segmentation: Brain tissue | BrainWeb18 [162], IBSR18 [163] |
Meng et al. [164,165] † | 2020 | FA | Segmentation: Optic disc/cup | Refuge [166], Drishti-GS [167], ORIGA [168], RIGA [169], RIM-ONE [170] |
Meng et al. [164,165] † | 2020 | US | Segmentation: Fetal head | HC18-challenge [171] |
Soberanis-Mukul et al. [172,173] | 2020 | CT | Segmentation: Pancreas and Spleen | NIH pancreas [174], MSD-spleen [175] |
Tian et al. [25] | 2020 | MRI | Segmentation: Prostate cancer | PROMISE12 [176], ISBI2013 [177], in-house (private) |
Chao et al. [178] | 2020 | CT/PET | Segmentation: Lymph node gross tumor | Esophageal radiotherapy (private) |
3.4.1. Vasculature Segmentation
3.4.2. Organ Segmentation
4. Research Challenges and Future Directions
4.1. Graph Representation
4.2. Dynamicity and Temporal Graphs
4.3. Training Paradigms and Complexity of Graph Models
4.4. Generalization of Graph Models and Deployment
4.5. Explainability and Interpretability
4.6. Future Prospects of Graph Neural Networks for Patient Behavioural Analysis
- Facial analysis: Clinical experts rely on certain facial modifications and symptoms for assistive medical diagnosis, and computer vision has been introduced to offer an automatic and objective assessment of facial features. Interesting results have been obtained by incorporating graph-based models for facial expression recognition [234], action unit detection [235] and micro-expression recognition [236].Potential applications: Postoperative pain management, monitoring vascular pulse, facial paralysis assessment, and several neurological and psychiatric disorders including seizure semiology, ADHD, autism, bipolarity and schizophrenia.
- Human pose localization: Since human pose estimation is related to graph structure, it is important to design appropriate models to estimate joints that are ambiguous or occluded. GCNs can process skeleton data in a flexible way to improve the skeleton structure’s expressive power. GCNs have been used to refine 2D human pose localization [237], 3D human pose estimation [238], and multi-person pose estimation [239].Potential applications: In-bed pose estimation to track pressure injuries from surgery and illness recovery, and other sleep disorders such as apnea, pressure ulcers, and carpal tunnel syndrome.
- Pose-based action recognition: Movement assessment and monitoring is a powerful tool during clinical observations where uncontrolled motions can aggravate wounds and injuries, or aid the diagnosis of motor and mental disorders. These motions are represented as continuous time-series of the kinematics of the head, limbs and trunk movements. Given a time-series of human joint locations, GCNs have been widely used to estimate human action patterns [56,240,241,242]Potential applications: Motor disorders (Epilepsy, Parkinson’s, Alzheimer’s, stroke, tremor, Huntington and neurodevelopmental disorders); mental disorders (Dementia, schizophrenia, major depressive, bipolar and autism spectrum); and other situations including breathing disorders, inpatient fall prediction, and health conditions such as agitation, depression, delirium, and unusual activity.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Bellec, P. Functional Annotation of Human Cognitive States using Graph Convolution Networks. In Proceedings of the 2019 Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Song, T.; Zheng, W.; Song, P.; Cui, Z. EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans. Affect. Comput. 2018, 11, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Chen, G.; Yap, P.T.; Shen, D. Multifold acceleration of diffusion MRI via deep learning reconstruction from slice-undersampled data. In Proceedings of the 26th International Conference Information Processing in Medical Imaging, Hong Kong, China, 2–7 June 2019; pp. 530–541. [Google Scholar]
- Selvan, R.; Kipf, T.; Welling, M.; Juarez, A.G.U.; Pedersen, J.H.; Petersen, J.; de Bruijne, M. Graph refinement based airway extraction using mean-field networks and graph neural networks. Med. Image Anal. 2020, 64, 101751. [Google Scholar] [CrossRef]
- Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 2013, 30, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Bronstein, M.M.; Bruna, J.; LeCun, Y.; Szlam, A.; Vandergheynst, P. Geometric deep learning: Going beyond euclidean data. IEEE Signal Process. Mag. 2017, 34, 18–42. [Google Scholar] [CrossRef] [Green Version]
- Georgousis, S.; Kenning, M.; Xie, X. Graph Deep Learning: State of the Art and Challenges. IEEE Access 2021, 9, 22106–22140. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, P.; Zhu, W. Deep learning on graphs: A survey. IEEE Trans. Knowl. Data Eng. 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M.; Liu, M.; Zhang, D. A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis. Front. Neurosci. 2020, 14, 779. [Google Scholar] [CrossRef]
- Parisot, S.; Ktena, S.I.; Ferrante, E.; Lee, M.; Guerrero, R.; Glocker, B.; Rueckert, D. Disease prediction using graph convolutional networks: Application to autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 2018, 48, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Dvornek, N.C.; Zhou, Y.; Zhuang, J.; Ventola, P.; Duncan, J.S. Graph neural network for interpreting task-fmri biomarkers. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 485–493. [Google Scholar]
- Li, X.; Zhou, Y.; Dvornek, N.C.; Zhang, M.; Zhuang, J.; Ventola, P.; Duncan, J.S. Pooling regularized graph neural network for fmri biomarker analysis. In Proceedings of the 23rd Medical Image Computing and Computer Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 625–635. [Google Scholar]
- Huang, Y.; Chung, A.C. Edge-Variational Graph Convolutional Networks for Uncertainty-Aware Disease Prediction. In Proceedings of the 23rd Medical Image Computing and Computer Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 562–572. [Google Scholar]
- Zhao, F.; Xia, S.; Wu, Z.; Duan, D.; Wang, L.; Lin, W.; Gilmore, J.H.; Shen, D.; Li, G. Spherical U-Net on cortical surfaces: Methods and applications. In Proceedings of the 26th International Conference Information Processing in Medical Imaging, Hong Kong, China, 2–7 June 2019; pp. 855–866. [Google Scholar]
- Gopinath, K.; Desrosiers, C.; Lombaert, H. Learnable Pooling in Graph Convolution Networks for Brain Surface Analysis. IEEE Trans. Pattern Anal. Mach. Intell 2020. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, F.; Xia, J.; Wang, L.; Lin, W.; Gilmore, J.H.; Li, G.; Shen, D. Intrinsic patch-based cortical anatomical parcellation using graph convolutional neural network on surface manifold. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 492–500. [Google Scholar]
- Hao, L.; Bao, S.; Tang, Y.; Gao, R.; Parvathaneni, P.; Miller, J.A.; Voorhies, W.; Yao, J.; Bunge, S.A.; Weiner, K.S.; et al. Automatic Labeling of Cortical Sulci Using Spherical Convolutional Neural Networks in a Developmental Cohort. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, Iowa, USA, 3–7 April 2020; pp. 412–415. [Google Scholar]
- Gopinath, K.; Desrosiers, C.; Lombaert, H. Graph Domain Adaptation for Alignment-Invariant Brain Surface Segmentation. In UNSURE and GRAIL in Conjunction with MICCAI; Springer: Lima, Peru, 2020; pp. 152–163. [Google Scholar]
- Noh, K.J.; Park, S.J.; Lee, S. Combining Fundus Images and Fluorescein Angiography for Artery/Vein Classification Using the Hierarchical Vessel Graph Network. In Proceedings of the 23rd Medical Image Computing and Computer Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 595–605. [Google Scholar]
- Tian, Z.; Li, X.; Zheng, Y.; Chen, Z.; Shi, Z.; Liu, L.; Fei, B. Graph-convolutional-network-based interactive prostate segmentation in MR images. Med. Phys. 2020, 47, 4164–4176. [Google Scholar] [CrossRef] [PubMed]
- Ahmedt-Aristizabal, D.; Armin, M.A.; Denman, S.; Fookes, C.; Petersson, L. A Survey on Graph-Based Deep Learning for Computational Histopathology. arXiv 2021, arXiv:2107.00272. [Google Scholar]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In Proceedings of the Neural Information Processing Systems (NeurIPS), Barcelona, Spain, 5–10 December 2016; pp. 3844–3852. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the International Conference on Learning (ICLR), Toulon, France, 24–26 April 2017. [Google Scholar]
- Niepert, M.; Ahmed, M.; Kutzkov, K. Learning convolutional neural networks for graphs. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2014–2023. [Google Scholar]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1024–1034. [Google Scholar]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 2008, 20, 61–80. [Google Scholar] [CrossRef] [Green Version]
- Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv 2013, arXiv:1312.6203. [Google Scholar]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? In Proceedings of the International Conference on Learning (ICLR) . New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E. Hierarchical attention networks for document classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 1480–1489. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. In Proceedings of the International Conference on Learning (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Gopinath, K.; Desrosiers, C.; Lombaert, H. Adaptive graph convolution pooling for brain surface analysis. In Proceedings of the 26th International Conference Information Processing in Medical Imaging, Hong Kong, China, 2–7 June 2019; pp. 86–98. [Google Scholar]
- Yang, B.; Pan, H.; Yu, J.; Han, K.; Wang, Y. Classification of Medical Images with Synergic Graph Convolutional Networks. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering Workshops, Macao, China, 8–12 April 2019; pp. 253–258. [Google Scholar]
- Zhang, J.; Xia, Y.; Wu, Q.; Xie, Y. Classification of medical images and illustrations in the biomedical literature using synergic deep learning. arXiv 2017, arXiv:1706.09092. [Google Scholar]
- Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying Graph Convolutional Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871. [Google Scholar]
- Rakhimberdina, Z.; Murata, T. Linear Graph Convolutional Model for Diagnosing Brain Disorders. In Proceedings of the International Conference on Complex Networks and Their Applications, Taragona, Spain, 10–12 December 2019; pp. 815–826. [Google Scholar]
- Juarez, A.G.U.; Selvan, R.; Saghir, Z.; de Bruijne, M. A joint 3D UNet-graph neural network-based method for airway segmentation from chest CTs. In Proceedings of the International Workshop on Machine Learning in Medical Imaging, Shenzhen, China, 13 October 2019; pp. 583–591. [Google Scholar]
- Lian, Q.; Qi, Y.; Pan, G.; Wang, Y. Learning graph in graph convolutional neural networks for robust seizure prediction. J. Neural Eng. 2020, 17, 035004. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, W.; Li, Z.; Jia, D.; Yan, C.; Hu, J.; Fang, J.; Yang, M. A Weighted Graph Attention Network Based Method for Multi-label Classification of Electrocardiogram Abnormalities. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 418–421. [Google Scholar]
- Yang, H.; Li, X.; Wu, Y.; Li, S.; Lu, S.; Duncan, J.S.; Gee, J.C.; Gu, S. Interpretable multimodality embedding of cerebral cortex using attention graph network for identifying bipolar disorder. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 799–807. [Google Scholar]
- Jia, Z.; Lin, Y.; Wang, J.; Zhou, R.; Ning, X.; He, Y.; Zhao, Y. Graphsleepnet: Adaptive spatial-temporal graph convolutional networks for sleep stage classification. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Yokohama, Japan, 11–17 July 2020; pp. 1324–1330. [Google Scholar]
- Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 922–929. [Google Scholar]
- Zhang, W.; Zhan, L.; Thompson, P.; Wang, Y. Deep Representation Learning for Multimodal Brain Networks. In Proceedings of the 23rd Medical Image Computing and Computer Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 613–624. [Google Scholar]
- Lipton, Z.C.; Berkowitz, J.; Elkan, C. A critical review of recurrent neural networks for sequence learning. arXiv 2015, arXiv:1506.00019. [Google Scholar]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. In Proceedings of the International Conference on Learning (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Seo, Y.; Defferrard, M.; Vandergheynst, P.; Bresson, X. Structured sequence modeling with graph convolutional recurrent networks. In Proceedings of the 25th International Conference Neural Information Processing, Siem Reap, Cambodia, 13–16 December 2018; pp. 362–373. [Google Scholar]
- Xing, X.; Li, Q.; Wei, H.; Zhang, M.; Zhan, Y.; Zhou, X.S.; Xue, Z.; Shi, F. Dynamic spectral graph convolution networks with assistant task training for early mci diagnosis. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 639–646. [Google Scholar]
- Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional sequence to sequence learning. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1243–1252. [Google Scholar]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, 13–19 July 2018. [Google Scholar]
- Yan, S.; Xiong, Y.; Lin, D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Zhang, C. Graph wavenet for deep spatial-temporal graph modeling. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Macao, China, 10–16 August 2019. [Google Scholar]
- Wang, J.; Liang, S.; He, D.; Wang, Y.; Wu, Y.; Zhang, Y. A Sequential Graph Convolutional Network with Frequency-domain Complex Network of EEG Signals for Epilepsy Detection. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Korea, 16–19 December 2020; pp. 785–792. [Google Scholar]
- Yao, D.; Sui, J.; Yang, E.; Yap, P.T.; Shen, D.; Liu, M. Temporal-Adaptive Graph Convolutional Network for Automated Identification of Major Depressive Disorder Using Resting-State fMRI. In Proceedings of the 11th International Workshop on Machine Learning in Medical Imaging, Lima, Peru, 4 October 2020; pp. 1–10. [Google Scholar]
- Li, X.; Duncan, J. BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis. bioRxiv 2020. [Google Scholar] [CrossRef]
- Venkataraman, A.; Yang, D.Y.J.; Pelphrey, K.A.; Duncan, J.S. Bayesian community detection in the space of group-level functional differences. IEEE Trans. Med. Imaging 2016, 35, 1866–1882. [Google Scholar] [CrossRef] [Green Version]
- Di Martino, A.; Yan, C.G.; Li, Q.; Denio, E.; Castellanos, F.X.; Alaerts, K.; Anderson, J.S.; Assaf, M.; Bookheimer, S.Y.; Dapretto, M.; et al. The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 2014, 19, 659–667. [Google Scholar] [CrossRef]
- Rakhimberdina, Z.; Liu, X.; Murata, T. Population Graph-Based Multi-Model Ensemble Method for Diagnosing Autism Spectrum Disorder. Sensors 2020, 20, 6001. [Google Scholar] [CrossRef]
- Li, X.; Dvornek, N.C.; Zhuang, J.; Ventola, P.; Duncan, J. Graph embedding using infomax for ASD classification and brain functional difference detection. In Proceedings of the Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, Houston, TX, USA, 18–20 February 2020; Volume 11317, p. 1131702. [Google Scholar]
- Jiang, H.; Cao, P.; Xu, M.; Yang, J.; Zaiane, O. Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Comput. Biol. Med. 2020, 127, 104096. [Google Scholar] [CrossRef] [PubMed]
- Kazi, A.; Shekarforoush, S.; Krishna, S.A.; Burwinkel, H.; Vivar, G.; Kortüm, K.; Ahmadi, S.A.; Albarqouni, S.; Navab, N. InceptionGCN: Receptive field aware graph convolutional network for disease prediction. In Proceedings of the 26th International Conference Information Processing in Medical Imaging, Hong Kong, China, 2–7 June 2019; pp. 73–85. [Google Scholar]
- Yao, D.; Liu, M.; Wang, M.; Lian, C.; Wei, J.; Sun, L.; Sui, J.; Shen, D. Triplet Graph Convolutional Network for Multi-scale Analysis of Functional Connectivity Using Functional MRI. In Proceedings of the International Workshop Graph Learning in Medical Imaging, Shenzhen, China, 17 October 2019; pp. 70–78. [Google Scholar]
- Anirudh, R.; Thiagarajan, J.J. Bootstrapping graph convolutional neural networks for autism spectrum disorder classification. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 3197–3201. [Google Scholar]
- Ktena, S.I.; Parisot, S.; Ferrante, E.; Rajchl, M.; Lee, M.; Glocker, B.; Rueckert, D. Metric learning with spectral graph convolutions on brain connectivity networks. NeuroImage 2018, 169, 431–442. [Google Scholar] [CrossRef]
- Ktena, S.; Parisot, S.; Ferrante, E.; Rajchl, M.; Lee, M.; Glocker, B.; Rueckert, D. Distance metric learning using graph convolutional networks: Application to functional brain networks. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Quebec City, QC, Canada, 11–13 September 2017; pp. 469–477. [Google Scholar]
- Parisot, S.; Ktena, S.I.; Ferrante, E.; Lee, M.; Moreno, R.G.; Glocker, B.; Rueckert, D. Spectral graph convolutions for population-based disease prediction. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Quebec City, QC, Canada, 11–13 September 2017; pp. 177–185. [Google Scholar]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 2012, 13, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.G.; Chen, X.; Li, L.; Castellanos, F.X.; Bai, T.J.; Bo, Q.J.; Cao, J.; Chen, G.M.; Chen, N.X.; Chen, W.; et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl. Acad. Sci. USA 2019, 116, 9078–9083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Essen, D.C.; Smith, S.M.; Barch, D.M.; Behrens, T.E.; Yacoub, E.; Ugurbil, K.; Wu-Minn HCP Consortium. The WU-Minn human connectome project: An overview. Neuroimage 2013, 80, 62–79. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Nejati, H.; Cheung, N.M. Deep neural networks on graph signals for brain imaging analysis. In Proceedings of the IEEE International Conference on Image Processing, Beijing, China, 17–20 September 2017; pp. 3295–3299. [Google Scholar]
- Mastrovito, D.; Hanson, C.; Hanson, S.J. Differences in atypical resting-state effective connectivity distinguish autism from schizophrenia. NeuroImage 2018, 18, 367–376. [Google Scholar] [CrossRef]
- Sherkatghanad, Z.; Akhondzadeh, M.; Salari, S.; Zomorodi-Moghadam, M.; Abdar, M.; Acharya, U.R.; Khosrowabadi, R.; Salari, V. Automated detection of autism spectrum disorder using a convolutional neural network. Front. Neurosci. 2020, 13, 1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Wang, S.; Aggarwal, C.C.; Tang, J. Graph convolutional networks with eigenpooling. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 723–731. [Google Scholar]
- Jang, S.; Moon, S.E.; Lee, J.S. Brain Signal Classification via Learning Connectivity Structure. arXiv 2019, arXiv:1905.11678. [Google Scholar]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. Deap: A database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 2011, 3, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.; Moon, S.E.; Lee, J.S. EEG-based video identification using graph signal modeling and graph convolutional neural network. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 15–20 April 2018; pp. 3066–3070. [Google Scholar]
- Mathur, P.; Chakka, V.K. Graph Signal Processing of EEG signals for Detection of Epilepsy. In Proceedings of the International Conference on Signal Processing and Integrated Networks, Noida, India, 27–28 February 2020; pp. 839–843. [Google Scholar]
- Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 2001, 64, 061907. [Google Scholar] [CrossRef] [Green Version]
- Covert, I.C.; Krishnan, B.; Najm, I.; Zhan, J.; Shore, M.; Hixson, J.; Po, M.J. Temporal Graph Convolutional Networks for Automatic Seizure Detection. In Proceedings of the Machine Learning for Healthcare, Arbor, MI, USA, 8–10 August 2019; pp. 160–180. [Google Scholar]
- Ihle, M.; Feldwisch-Drentrup, H.; Teixeira, C.A.; Witon, A.; Schelter, B.; Timmer, J.; Schulze-Bonhage, A. EPILEPSIAE–A European epilepsy database. Comput. Methods Programs Biomed. 2012, 106, 127–138. [Google Scholar] [CrossRef]
- Wagh, N.; Varatharajah, Y. EEG-GCNN: Augmenting Electroencephalogram-based Neurological Disease Diagnosis using a Domain-guided Graph Convolutional Neural Network. In Proceedings of the Machine Learning for Healthcare, New York, NY, USA, 7–8 August 2020; pp. 367–378. [Google Scholar]
- Obeid, I.; Picone, J. The temple university hospital EEG data corpus. Front. Neurosci. 2016, 10, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babayan, A.; Erbey, M.; Kumral, D.; Reinelt, J.D.; Reiter, A.M.; Röbbig, J.; Schaare, H.L.; Uhlig, M.; Anwander, A.; Bazin, P.L.; et al. A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults. Sci. Data 2019, 6, 180308. [Google Scholar] [CrossRef] [PubMed]
- TIANCHI. Hefei Hi-Tech Cup ECG Intelligent Competition. 2019. Available online: https://tianchi.aliyun.com/competition/entrance/231754/information (accessed on 27 August 2020).
- Sun, M.; Isufi, E.; de Groot, N.M.; Hendriks, R.C. Graph-time spectral analysis for atrial fibrillation. Biomed. Signal Process. Control 2020, 59, 101915. [Google Scholar] [CrossRef] [Green Version]
- Yaksh, A.; van der Does, L.J.; Kik, C.; Knops, P.; Oei, F.B.; van de Woestijne, P.C.; Bekkers, J.A.; Bogers, A.J.; Allessie, M.A.; de Groot, N.M. A novel intra-operative, high-resolution atrial mapping approach. J. Interv. Card. Electrophysiol. 2015, 44, 221–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’reilly, C.; Gosselin, N.; Carrier, J.; Nielsen, T. Montreal Archive of Sleep Studies: An open-access resource for instrument benchmarking and exploratory research. J. Sleep Res. 2014, 23, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Donner, R.V.; Marwan, N.; Donges, J.F.; Kurths, J. Complex network approaches to nonlinear time series analysis. Phys. Rep. 2019, 787, 1–97. [Google Scholar] [CrossRef]
- Panossian, L.A.; Avidan, A.Y. Review of sleep disorders. Med. Clin. N. Am. 2009, 93, 407–425. [Google Scholar] [CrossRef]
- Ma, J.; Zhu, X.; Yang, D.; Chen, J.; Wu, G. Attention-Guided Deep Graph Neural Network for Longitudinal Alzheimer’s Disease Analysis. In Proceedings of the 23rd Medical Image Computing and Computer Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 387–396. [Google Scholar]
- Jack Jr, C.R.; Bernstein, M.A.; Fox, N.C.; Thompson, P.; Alexander, G.; Harvey, D.; Borowski, B.; Britson, P.J.L.; Whitwell, J.; Ward, C.; et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 2008, 27, 685–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Tan, G.; Lan, W.; Wang, J. Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks. BMC Bioinform. 2020, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Aisen, P.; Beckett, L.A.; Donohue, M.; Gamst, A.; Harvey, D.J.; Jack, C.; Jagust, W.; Shaw, L.; Toga, A.; et al. Alzheimer’s disease neuroimaging initiative (ADNI): Clinical characterization. Neurology 2010, 74, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Marinescu, R.V.; Oxtoby, N.P.; Young, A.L.; Bron, E.E.; Toga, A.W.; Weiner, M.W.; Barkhof, F.; Fox, N.C.; Klein, S.; Alexander, D.C.; et al. Tadpole challenge: Prediction of longitudinal evolution in Alzheimer’s disease. arXiv 2018, arXiv:1805.03909. [Google Scholar]
- Yu, S.; Wang, S.; Xiao, X.; Cao, J.; Yue, G.; Liu, D.; Wang, T.; Xu, Y.; Lei, B. Multi-scale Enhanced Graph Convolutional Network for Early Mild Cognitive Impairment Detection. In Proceedings of the 23rd Medical Image Computing and Computer Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 228–237. [Google Scholar]
- Zhao, X.; Zhou, F.; Ou-Yang, L.; Wang, T.; Lei, B. Graph Convolutional Network Analysis for Mild Cognitive Impairment Prediction. In Proceedings of the IEEE International Symposium on Biomedical Imaging, Venice, Italy, 8–11 April 2019; pp. 1598–1601. [Google Scholar]
- Wee, C.Y.; Liu, C.; Lee, A.; Poh, J.S.; Ji, H.; Qiu, A.; Initiative A.D.N.; others. Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations. NeuroImage 2019, 23, 101929. [Google Scholar] [CrossRef] [PubMed]
- Song, T.A.; Chowdhury, S.R.; Yang, F.; Jacobs, H.; El Fakhri, G.; Li, Q.; Johnson, K.; Dutta, J. Graph Convolutional Neural Networks For Alzheimer’s Disease Classification. In Proceedings of the IEEE International Symposium on Biomedical Imaging, Venice, Italy, 8–11 April 2019; pp. 414–417. [Google Scholar]
- Guo, J.; Qiu, W.; Li, X.; Zhao, X.; Guo, N.; Li, Q. Predicting Alzheimer’s Disease by Hierarchical Graph Convolution from Positron Emission Tomography Imaging. In Proceedings of the IEEE International Conference on Big Data, Los Angeles, CA, USA, 9–12 December 2019; pp. 5359–5363. [Google Scholar]
- Beckett, L.A.; Donohue, M.C.; Wang, C.; Aisen, P.; Harvey, D.J.; Saito, N.; Initiative, A.D.N. The Alzheimer’s Disease Neuroimaging Initiative phase 2: Increasing the length, breadth, and depth of our understanding. Alzheimer’s Dement. 2015, 11, 823–831. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; He, L.; Chen, K.; Luo, Y.; Zhou, J.; Wang, F. Multi-view graph convolutional network and its applications on neuroimage analysis for parkinson’s disease. arXiv 2018, arXiv:1805.08801. [Google Scholar]
- Marek, K.; Jennings, D.; Lasch, S.; Siderowf, A.; Tanner, C.; Simuni, T.; Coffey, C.; Kieburtz, K.; Flagg, E.; Chowdhury, S.; et al. The parkinson progression marker initiative (PPMI). Prog. Neurobiol. 2011, 95, 629–635. [Google Scholar] [CrossRef]
- McDaniel, C.; Quinn, S. Developing a Graph Convolution-Based Analysis Pipeline for Multi-Modal Neuroimage Data: An Application to Parkinson’s Disease. In Proceedings of the Python in Science Conference, Austin, TX, USA, 8–14 July 2019; pp. 42–49. [Google Scholar]
- Wang, S.H.; Govindaraj, V.V.; Górriz, J.M.; Zhang, X.; Zhang, Y.D. Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network. Inf. Fusion 2020, 67, 208–229. [Google Scholar] [CrossRef]
- Yu, X.; Lu, S.; Guo, L.; Wang, S.H.; Zhang, Y.D. ResGNet-C: A graph convolutional neural network for detection of COVID-19. Neurocomputing 2020, 452, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Govindaraj, V.; Gorriz, J.M.; Zhang, X.; Zhang, Y.D. Explainable diagnosis of secondary pulmonary tuberculosis by graph rank-based average pooling neural network. J. Ambient Intell. Humaniz. Comput. 2021, 1–14. [Google Scholar]
- Hou, D.; Zhao, Z.; Hu, S. Multi-Label Learning with Visual-Semantic Embedded Knowledge Graph for Diagnosis of Radiology Imaging. IEEE Access 2021, 9, 15720–15730. [Google Scholar] [CrossRef]
- Demner-Fushman, D.; Kohli, M.D.; Rosenman, M.B.; Shooshan, S.E.; Rodriguez, L.; Antani, S.; Thoma, G.R.; McDonald, C.J. Preparing a collection of radiology examinations for distribution and retrieval. J. Am. Med. Inform. Assoc. 2016, 23, 304–310. [Google Scholar] [CrossRef]
- Johnson, A.E.; Pollard, T.J.; Greenbaum, N.R.; Lungren, M.P.; Deng, C.Y.; Peng, Y.; Lu, Z.; Mark, R.G.; Berkowitz, S.J.; Horng, S. MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs. arXiv 2019, arXiv:1901.07042. [Google Scholar]
- Zhang, Y.; Wang, X.; Xu, Z.; Yu, Q.; Yuille, A.; Xu, D. When radiology report generation meets knowledge graph. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12910–12917. [Google Scholar]
- Chen, B.; Li, J.; Lu, G.; Yu, H.; Zhang, D. Label Co-occurrence Learning with Graph Convolutional Networks for Multi-label Chest X-ray Image Classification. IEEE J. Biomed. Health Inform. 2020, 24, 2292–2302. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2097–2106. [Google Scholar]
- Irvin, J.; Rajpurkar, P.; Ko, M.; Yu, Y.; Ciurea-Ilcus, S.; Chute, C.; Marklund, H.; Haghgoo, B.; Ball, R.; Shpanskaya, K.; et al. Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 590–597. [Google Scholar]
- Zhang, Y.D.; Satapathy, S.C.; Guttery, D.S.; Górriz, J.M.; Wang, S.H. Improved Breast Cancer Classification Through Combining Graph Convolutional Network and Convolutional Neural Network. Inf. Process. Manag. 2021, 58, 102439. [Google Scholar] [CrossRef]
- Sucling, J.P. The mammographic image analysis society digital mammogram database. Digital Mammo 1994, 375–386. [Google Scholar]
- Du, H.; Feng, J.; Feng, M. Zoom in to where it matters: A hierarchical graph based model for mammogram analysis. arXiv 2019, arXiv:1912.07517. [Google Scholar]
- Moreira, I.C.; Amaral, I.; Domingues, I.; Cardoso, A.; Cardoso, M.J.; Cardoso, J.S. Inbreast: Toward a full-field digital mammographic database. Acad. Radiol. 2012, 19, 236–248. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Peng, Q.; Li, H.; Zhang, Z.; You, X.; Liu, H.; Fischer, K.; Furth, S.L.; Tasian, G.E.; Fan, Y. Multi-instance Deep Learning with Graph Convolutional Neural Networks for Diagnosis of Kidney Diseases Using Ultrasound Imaging. In UNSURE and CLIP in Conjunction with MICCAI; Springer: Shenzhen, China, 2019; pp. 146–154. [Google Scholar]
- Liu, M.; Duffy, B.A.; Sun, Z.; Toga, A.W.; Barkovich, A.J.; Xu, D.; Kim, H. Deep Learning of Cortical Surface Features Using Graph-Convolution Predicts Neonatal Brain Age and Neurodevelopmental Outcome. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, Iowa, USA, 3–7 April 2020; pp. 1335–1338. [Google Scholar]
- Chen, G.; Hong, Y.; Zhang, Y.; Kim, J.; Huynh, K.M.; Ma, J.; Lin, W.; Shen, D.; Yap, P.T.; Consortium U.B.C.P.; et al. Estimating Tissue Microstructure with Undersampled Diffusion Data via Graph Convolutional Neural Networks. In Proceedings of the 23rd Medical Image Computing and Computer Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 280–290. [Google Scholar]
- Howell, B.R.; Styner, M.A.; Gao, W.; Yap, P.T.; Wang, L.; Baluyot, K.; Yacoub, E.; Chen, G.; Potts, T.; Salzwedel, A.; et al. The UNC/UMN baby connectome project (BCP): An overview of the study design and protocol development. NeuroImage 2019, 185, 891–905. [Google Scholar] [CrossRef]
- Kim, J.; Hong, Y.; Chen, G.; Lin, W.; Yap, P.T.; Shen, D. Graph-based deep learning for prediction of longitudinal infant diffusion MRI data. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 133–141. [Google Scholar]
- Hong, Y.; Kim, J.; Chen, G.; Lin, W.; Yap, P.T.; Shen, D. Longitudinal Prediction of Infant Diffusion MRI Data via Graph Convolutional Adversarial Networks. IEEE Trans. Med. Imaging 2019, 38, 2717–2725. [Google Scholar] [CrossRef]
- Sotiropoulos, S.N.; Jbabdi, S.; Xu, J.; Andersson, J.L.; Moeller, S.; Auerbach, E.J.; Glasser, M.F.; Hernandez, M.; Sapiro, G.; Jenkinson, M.; et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage 2013, 80, 125–143. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Chen, G.; Yap, P.T.; Shen, D. Reconstructing high-quality diffusion MRI data from orthogonal slice-undersampled data using graph convolutional neural networks. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 529–537. [Google Scholar]
- Cheng, F.; Chen, Y.; Zong, X.; Lin, W.; Shen, D.; Yap, P.T. Acceleration of High-Resolution 3D MR Fingerprinting via a Graph Convolutional Network. In Proceedings of the 23rd Medical Image Computing and Computer Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 158–166. [Google Scholar]
- Tong, T.; Gao, Q.; Guerrero, R.; Ledig, C.; Chen, L.; Rueckert, D.; Alzheimer’s Disease Neuroimaging Initiative. A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer’s disease. IEEE Trans. Biomed. Eng. 2016, 64, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, D.; Gulani, V.; Seiberlich, N.; Liu, K.; Sunshine, J.L.; Duerk, J.L.; Griswold, M.A. Magnetic resonance fingerprinting. Nature 2013, 495, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Pan, L. A survey of graph cuts/graph search based medical image segmentation. IEEE Rev. Biomed. Eng. 2018, 11, 112–124. [Google Scholar] [CrossRef]
- Wolterink, J.M.; Leiner, T.; Išgum, I. Graph convolutional networks for coronary artery segmentation in cardiac CT angiography. In Proceedings of the International Workshop Graph Learning in Medical Imaging, Shenzhen, China, 17 October 2019; pp. 62–69. [Google Scholar]
- Kirişli, H.; Schaap, M.; Metz, C.; Dharampal, A.; Meijboom, W.B.; Papadopoulou, S.L.; Dedic, A.; Nieman, K.; de Graaf, M.A.; Meijs, M.; et al. Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography. Med. Image Anal. 2013, 17, 859–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, Z.; Staring, M.; Zhou, X.; Xie, Q.; Xiao, X.; Bakker, M.E.; Kroft, L.J.; Lelieveldt, B.P.; Boon, G.J.; Klok, F.A.; et al. Linking Convolutional Neural Networks with Graph Convolutional Networks: Application in Pulmonary Artery-Vein Separation. In Proceedings of the International Workshop Graph Learning in Medical Imaging, Shenzhen, China, 17 October 2019; pp. 36–43. [Google Scholar]
- Hu, Q.; Abràmoff, M.D.; Garvin, M.K. Automated separation of binary overlapping trees in low-contrast color retinal images. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Nagoya, Japan, 22–26 September 2013; pp. 436–443. [Google Scholar]
- Shin, S.Y.; Lee, S.; Yun, I.D.; Lee, K.M. Deep vessel segmentation by learning graphical connectivity. Med. Image Anal. 2019, 58, 101556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Hoover, A.; Kouznetsova, V.; Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 2000, 19, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Fraz, M.M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A.R.; Owen, C.G.; Barman, S.A. An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 2012, 59, 2538–2548. [Google Scholar] [CrossRef]
- Budai, A.; Bock, R.; Maier, A.; Hornegger, J.; Michelson, G. Robust vessel segmentation in fundus images. Int. J. Biomed. Imaging 2013, 2013, 154860. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Hatsukami, T.; Hwang, J.N.; Yuan, C. Automated Intracranial Artery Labeling Using a Graph Neural Network and Hierarchical Refinement. In Proceedings of the 23rd Medical Image Computing and Computer Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 76–85. [Google Scholar]
- Chen, L.; Sun, J.; Hippe, D.S.; Balu, N.; Yuan, Q.; Yuan, I.; Zhao, X.; Li, R.; He, L.; Hatsukami, T.S.; et al. Quantitative assessment of the intracranial vasculature in an older adult population using iCafe. Neurobiol. Aging 2019, 79, 59–65. [Google Scholar] [CrossRef]
- Bullitt, E.; Zeng, D.; Gerig, G.; Aylward, S.; Joshi, S.; Smith, J.K.; Lin, W.; Ewend, M.G. Vessel tortuosity and brain tumor malignancy: A blinded study1. Acad. Radiol. 2005, 12, 1232–1240. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Jiang, P.; Xue, Z.; Zhan, Y.; Wu, D.; Zhang, L.; Wang, Q.; Shi, F.; Shen, D. Graph Convolutional Network Based Point Cloud for Head and Neck Vessel Labeling. In Proceedings of the 11th International Workshop on Machine Learning in Medical Imaging, Lima, Peru, 4 October 2020; pp. 474–483. [Google Scholar]
- Lyu, I.; Bao, S.; Hao, L.; Yao, J.; Miller, J.A.; Voorhies, W.; Taylor, W.D.; Bunge, S.A.; Weiner, K.S.; Landman, B.A. Labeling Lateral Prefrontal Sulci using Spherical Data Augmentation and Context-aware Training. NeuroImage 2021, 229, 117758. [Google Scholar] [CrossRef]
- Wendelken, C.; Ferrer, E.; Ghetti, S.; Bailey, S.K.; Cutting, L.; Bunge, S.A. Frontoparietal structural connectivity in childhood predicts development of functional connectivity and reasoning ability: A large-scale longitudinal investigation. J. Neurosci. 2017, 37, 8549–8558. [Google Scholar] [CrossRef] [Green Version]
- Van Essen, D.C.; Ugurbil, K.; Auerbach, E.; Barch, D.; Behrens, T.E.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M.; Curtiss, S.W.; et al. The Human Connectome Project: A data acquisition perspective. Neuroimage 2012, 62, 2222–2231. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.; Ghosh, S.S.; Bao, F.S.; Giard, J.; Häme, Y.; Stavsky, E.; Lee, N.; Rossa, B.; Reuter, M.; Chaibub Neto, E.; et al. Mindboggling morphometry of human brains. PLoS Comput. Biol. 2017, 13, e1005350. [Google Scholar] [CrossRef]
- He, R.; Gopinath, K.; Desrosiers, C.; Lombaert, H. Spectral graph transformer networks for brain surface parcellation. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, Iowa, USA, 3–7 April 2020; pp. 372–376. [Google Scholar]
- Gopinath, K.; Desrosiers, C.; Lombaert, H. Graph convolutions on spectral embeddings for cortical surface parcellation. Med. Image Anal. 2019, 54, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Parvathaneni, P.; Bao, S.; Nath, V.; Woodward, N.D.; Claassen, D.O.; Cascio, C.J.; Zald, D.H.; Huo, Y.; Landman, B.A.; Lyu, I. Cortical Surface Parcellation using Spherical Convolutional Neural Networks. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 501–509. [Google Scholar]
- Cucurull, G.; Wagstyl, K.; Casanova, A.; Veličković, P.; Jakobsen, E.; Drozdzal, M.; Romero, A.; Evans, A.; Bengio, Y. Convolutional neural networks for mesh-based parcellation of the cerebral cortex. In Proceedings of the Medical Imaging with Deep Learning, Amsterdam, The Netherlands, 4–6 July 2018. [Google Scholar]
- Jakobsen, E.; Böttger, J.; Bellec, P.; Geyer, S.; Rübsamen, R.; Petrides, M.; Margulies, D.S. Subdivision of Broca’s region based on individual-level functional connectivity. Eur. J. Neurosci. 2016, 43, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.H.; Ashraf, H.; Dirksen, A.; Bach, K.; Hansen, H.; Toennesen, P.; Thorsen, H.; Brodersen, J.; Skov, B.G.; Døssing, M.; et al. The Danish randomized lung cancer CT screening trial—overall design and results of the prevalence round. J. Thorac. Oncol. 2009, 4, 608–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvan, R.; Kipf, T.; Welling, M.; Pedersen, J.H.; Petersen, J.; de Bruijne, M. Extraction of airways using graph neural networks. In Proceedings of the Medical Imaging with Deep Learning, Amsterdam, The Netherlands, 4–6 July 2018. [Google Scholar]
- Yan, Z.; Youyong, K.; Jiasong, W.; Coatrieux, G.; Huazhong, S. Brain Tissue Segmentation based on Graph Convolutional Networks. In Proceedings of the IEEE International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; pp. 1470–1474. [Google Scholar]
- Kwan, R.S.; Evans, A.C.; Pike, G.B. MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 1999, 18, 1085–1097. [Google Scholar] [CrossRef]
- Cocosco, C.A.; Kollokian, V.; Kwan, R.K.S.; Pike, G.B.; Evans, A.C. Brainweb: Online interface to a 3D MRI simulated brain database. NeuroImage 1997, 5, 425. [Google Scholar]
- Meng, Y.; Meng, W.; Gao, D.; Zhao, Y.; Yang, X.; Huang, X.; Zheng, Y. Regression of Instance Boundary by Aggregated CNN and GCN. In Proceedings of the European Conference on Computer Vision, online, 23–28 August 2020; pp. 190–207. [Google Scholar]
- Meng, Y.; Wei, M.; Gao, D.; Zhao, Y.; Yang, X.; Huang, X.; Zheng, Y. CNN-GCN aggregation enabled boundary regression for biomedical image segmentation. In Proceedings of the 23rd Medical Image Computing and Computer Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 352–362. [Google Scholar]
- Orlando, J.I.; Fu, H.; Breda, J.B.; van Keer, K.; Bathula, D.R.; Diaz-Pinto, A.; Fang, R.; Heng, P.A.; Kim, J.; Lee, J.; et al. Refuge challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 2020, 59, 101570. [Google Scholar] [CrossRef]
- Sivaswamy, J.; Krishnadas, S.; Joshi, G.D.; Jain, M.; Tabish, A.U.S. Drishti-gs: Retinal image dataset for optic nerve head (onh) segmentation. In Proceedings of the IEEE International Symposium on Biomedical Imaging, Beijing, China, 29 April–2 May 2014; pp. 53–56. [Google Scholar]
- Zhang, Z.; Yin, F.S.; Liu, J.; Wong, W.K.; Tan, N.M.; Lee, B.H.; Cheng, J.; Wong, T.Y. Origa-light: An online retinal fundus image database for glaucoma analysis and research. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 1–4 September 2010; pp. 3065–3068. [Google Scholar]
- Almazroa, A.; Alodhayb, S.; Osman, E.; Ramadan, E.; Hummadi, M.; Dlaim, M.; Alkatee, M.; Raahemifar, K.; Lakshminarayanan, V. Retinal fundus images for glaucoma analysis: The RIGA dataset. In Proceedings of the Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, Houston, TX, USA, 13–15 February 2018; Volume 10579, p. 105790B. [Google Scholar]
- Fumero, F.; Alayón, S.; Sanchez, J.L.; Sigut, J.; Gonzalez-Hernandez, M. RIM-ONE: An open retinal image database for optic nerve evaluation. In Proceedings of the 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), Bristol, UK, 27–30 June 2011; pp. 1–6. [Google Scholar]
- van den Heuvel, T.L.; de Bruijn, D.; de Korte, C.L.; Ginneken, B.v. Automated measurement of fetal head circumference using 2D ultrasound images. PLoS ONE 2018, 13, e0200412. [Google Scholar] [CrossRef]
- Soberanis-Mukul, R.D.; Navab, N.; Albarqouni, S. An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation. arXiv 2020, arXiv:2012.03352. [Google Scholar]
- Soberanis-Mukul, R.D.; Navab, N.; Albarqouni, S. Uncertainty-based graph convolutional networks for organ segmentation refinement. arXiv 2020, arXiv:1906.02191. [Google Scholar]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, A.L.; Antonelli, M.; Bakas, S.; Bilello, M.; Farahani, K.; Van Ginneken, B.; Kopp-Schneider, A.; Landman, B.A.; Litjens, G.; Menze, B.; et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv 2019, arXiv:1902.09063. [Google Scholar]
- Litjens, G.; Toth, R.; van de Ven, W.; Hoeks, C.; Kerkstra, S.; van Ginneken, B.; Vincent, G.; Guillard, G.; Birbeck, N.; Zhang, J.; et al. Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Med. Image Anal. 2014, 18, 359–373. [Google Scholar] [CrossRef] [Green Version]
- Bloch, N.; Madabhushi, A.; Huisman, H.; Freymann, J.; Kirby, J.; Grauer, M.; Enquobahrie, A.; Jaffe, C.; Clarke, L.; Farahani, K. NCI-ISBI 2013 challenge: Automated segmentation of prostate structures. Cancer Imaging Arch. 2015, 370. [Google Scholar] [CrossRef]
- Chao, C.H.; Zhu, Z.; Guo, D.; Yan, K.; Ho, T.Y.; Cai, J.; Harrison, A.P.; Ye, X.; Xiao, J.; Yuille, A.; et al. Lymph Node Gross Tumor Volume Detection in Oncology Imaging via Relationship Learning Using Graph Neural Network. In Proceedings of the 23rd Medical Image Computing and Computer Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 772–782. [Google Scholar]
- Gao, H.; Ji, S. Graph u-nets. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 2083–2092. [Google Scholar]
- Battaglia, P.W.; Hamrick, J.B.; Bapst, V.; Sanchez-Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.; Santoro, A.; Faulkner, R.; et al. Relational inductive biases, deep learning, and graph networks. arXiv 2018, arXiv:1806.01261. [Google Scholar]
- Defferrard, M.; Milani, M.; Gusset, F.; Perraudin, N. DeepSphere: A graph-based spherical CNN. In Proceedings of the International Conference on Learning (ICLR), Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Jiang, C.; Huang, J.; Kashinath, K.; Marcus, P.; Niessner, M. Spherical CNNs on unstructured grids. In Proceedings of the International Conference on Learning (ICLR), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Dias, P.A.; Medeiros, H. Semantic segmentation refinement by monte carlo region growing of high confidence detections. In Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; pp. 131–146. [Google Scholar]
- Ling, H.; Gao, J.; Kar, A.; Chen, W.; Fidler, S. Fast interactive object annotation with curve-gcn. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 5257–5266. [Google Scholar]
- Li, X.; Qian, B.; Wei, J.; Li, A.; Liu, X.; Zheng, Q. Classify EEG and Reveal Latent Graph Structure with Spatio-Temporal Graph Convolutional Neural Network. In Proceedings of the IEEE International Conference on Data Mining, Beijing, China, 8–11 November 2019; pp. 389–398. [Google Scholar]
- Xie, X.; Niu, J.; Liu, X.; Chen, Z.; Tang, S. A Survey on Domain Knowledge Powered Deep Learning for Medical Image Analysis. arXiv 2020, arXiv:2004.12150. [Google Scholar]
- Chen, Z.M.; Wei, X.S.; Wang, P.; Guo, Y. Multi-label image recognition with graph convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 5177–5186. [Google Scholar]
- Wang, H.; Wang, J.; Wang, J.; Zhao, M.; Zhang, W.; Zhang, F.; Xie, X.; Guo, M. Graphgan: Graph representation learning with generative adversarial nets. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- You, J.; Ying, R.; Ren, X.; Hamilton, W.; Leskovec, J. Graphrnn: Generating realistic graphs with deep auto-regressive models. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5708–5717. [Google Scholar]
- Liao, R.; Li, Y.; Song, Y.; Wang, S.; Nash, C.; Hamilton, W.L.; Duvenaud, D.; Urtasun, R.; Zemel, R.S. Efficient graph generation with graph recurrent attention networks. arXiv 2019, arXiv:1910.00760. [Google Scholar]
- Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 974–983. [Google Scholar]
- Chen, J.; Ma, T.; Xiao, C. FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling. In Proceedings of the International Conference on Learning (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Chen, J.; Zhu, J.; Song, L. Stochastic training of graph convolutional networks with variance reduction. arXiv 2017, arXiv:1710.10568. [Google Scholar]
- Chiang, W.L.; Liu, X.; Si, S.; Li, Y.; Bengio, S.; Hsieh, C.J. Cluster-gcn: An efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 257–266. [Google Scholar]
- You, Y.; Chen, T.; Wang, Z.; Shen, Y. L2-gcn: Layer-wise and learned efficient training of graph convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2127–2135. [Google Scholar]
- You, Y.; Chen, T.; Wang, Z.; Shen, Y. When does self-supervision help graph convolutional networks? In Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, 13–18 July 2020; pp. 10871–10880. [Google Scholar]
- Ma, X.; Zhang, T.; Xu, C. Gcan: Graph convolutional adversarial network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 8266–8276. [Google Scholar]
- Hassani, K.; Khasahmadi, A.H. Contrastive multi-view representation learning on graphs. In Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, 13–18 July 2020; pp. 4116–4126. [Google Scholar]
- Velickovic, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep Graph Infomax. In Proceedings of the International Conference on Learning (ICLR), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Sun, F.Y.; Hoffmann, J.; Verma, V.; Tang, J. Infograph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization. In Proceedings of the International Conference on Learning (ICLR), Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Coronato, A.; Naeem, M.; De Pietro, G.; Paragliola, G. Reinforcement learning for intelligent healthcare applications: A survey. Artif. Intell. Med. 2020, 109, 101964. [Google Scholar] [CrossRef]
- Jiang, J.; Dun, C.; Huang, T.; Lu, Z. Graph convolutional reinforcement learning. In Proceedings of the International Conference on Learning (ICLR), Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Lee, J.B.; Rossi, R.; Kong, X. Graph classification using structural attention. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &, Data Mining, London, UK, 19–23 August 2018; pp. 1666–1674. [Google Scholar]
- Li, Q.; Han, Z.; Wu, X.M. Deeper insights into graph convolutional networks for semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Li, G.; Muller, M.; Thabet, A.; Ghanem, B. Deepgcns: Can gcns go as deep as cnns? In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9267–9276. [Google Scholar]
- Rossi, E.; Frasca, F.; Chamberlain, B.; Eynard, D.; Bronstein, M.; Monti, F. Sign: Scalable inception graph neural networks. arXiv 2020, arXiv:2004.11198. [Google Scholar]
- Tailor, S.A.; Opolka, F.L.; Liò, P.; Lane, N.D. Adaptive Filters and Aggregator Fusion for Efficient Graph Convolutions. arXiv 2021, arXiv:2104.01481. [Google Scholar]
- Zhu, Z.; Xu, S.; Tang, J.; Qu, M. Graphvite: A high-performance cpu-gpu hybrid system for node embedding. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2494–2504. [Google Scholar]
- Akyildiz, T.A.; Aljundi, A.A.; Kaya, K. Gosh: Embedding big graphs on small hardware. In Proceedings of the International Conference on Parallel Processing, London, UK, 19–20 August 2020; pp. 1–11. [Google Scholar]
- Abadal, S.; Jain, A.; Guirado, R.; López-Alonso, J.; Alarcón, E. Computing Graph Neural Networks: A Survey from Algorithms to Accelerators. arXiv 2020, arXiv:2010.00130. [Google Scholar]
- Wang, M.; Zheng, D.; Ye, Z.; Gan, Q.; Li, M.; Song, X.; Zhou, J.; Ma, C.; Yu, L.; Gai, Y.; et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv 2019, arXiv:1909.01315. [Google Scholar]
- Dissanayake, T.; Fernando, T.; Denman, S.; Ghaemmaghami, H.; Sridharan, S.; Fookes, C. Domain Generalization in Biosignal Classification. IEEE Trans. Biomed. Eng. 2020, 68, 1978–1989. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, W.; Zong, Y.; Cui, Z.; Zhang, T.; Zhou, X. A bi-hemisphere domain adversarial neural network model for EEG emotion recognition. IEEE Trans. Affect. Comput. 2018, 12, 494–504. [Google Scholar] [CrossRef]
- Zhong, P.; Wang, D.; Miao, C. EEG-Based Emotion Recognition Using Regularized Graph Neural Networks. arXiv 2020, arXiv:1907.07835. [Google Scholar] [CrossRef]
- Mahajan, K.; Sharma, M.; Vig, L. Meta-dermdiagnosis: Few-shot skin disease identification using meta-learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 730–731. [Google Scholar]
- Bontonou, M.; Farrugia, N.; Gripon, V. Few-shot Learning for Decoding Brain Signals. arXiv 2020, arXiv:2010.12500. [Google Scholar]
- Kim, J.; Kim, T.; Kim, S.; Yoo, C.D. Edge-labeling graph neural network for few-shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 11–20. [Google Scholar]
- Caceres, C.A.; Roos, M.J.; Rupp, K.M.; Milsap, G.; Crone, N.E.; Wolmetz, M.E.; Ratto, C.R. Feature selection methods for zero-shot learning of neural activity. Front. Neuroinform. 2017, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Li, J.; Ji, H.; Pang, Z.; Zheng, X.; Lu, R.; Li, M.; Zhuang, J. Zero-Shot Learning for EEG Classification in Motor Imagery-Based BCI System. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2411–2419. [Google Scholar] [CrossRef]
- Kampffmeyer, M.; Chen, Y.; Liang, X.; Wang, H.; Zhang, Y.; Xing, E.P. Rethinking knowledge graph propagation for zero-shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 11487–11496. [Google Scholar]
- Markus, A.F.; Kors, J.A.; Rijnbeek, P.R. The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies. J. Biomed. Inform. 2020, 113, 103655. [Google Scholar] [CrossRef]
- Du, M.; Liu, N.; Hu, X. Techniques for interpretable machine learning. Commun. ACM 2019, 63, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Ying, R.; Bourgeois, D.; You, J.; Zitnik, M.; Leskovec, J. Gnnexplainer: Generating explanations for graph neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Pope, P.E.; Kolouri, S.; Rostami, M.; Martin, C.E.; Hoffmann, H. Explainability methods for graph convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 10772–10781. [Google Scholar]
- Baldassarre, F.; Azizpour, H. Explainability techniques for graph convolutional networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In Proceedings of the Winter Conference on Applications of Computer Vision, Lake Tahoe, NV, USA, 12–15 March 2018; pp. 839–847. [Google Scholar]
- Schwarzenberg, R.; Hübner, M.; Harbecke, D.; Alt, C.; Hennig, L. Layerwise Relevance Visualization in Convolutional Text Graph Classifiers. arXiv 2019, arXiv:1909.10911. [Google Scholar]
- Vu, M.N.; Thai, M.T. Pgm-explainer: Probabilistic graphical model explanations for graph neural networks. In Proceedings of the Advances in Neural Information Processing Systems, online, 6–12 December 2020. [Google Scholar]
- Yuan, H.; Yu, H.; Wang, J.; Li, K.; Ji, S. On explainability of graph neural networks via subgraph explorations. arXiv 2021, arXiv:2102.05152. [Google Scholar]
- Liu, S.; Ostadabbas, S. Seeing Under the Cover: A Physics Guided Learning Approach for In-bed Pose Estimation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 236–245. [Google Scholar]
- Martinez, M.; Ahmedt-Aristizabal, D.; Väth, T.; Fookes, C.; Benz, A.; Stiefelhagen, R. A Vision-based System for Breathing Disorder Identification: A Deep Learning Perspective. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin, Germany, 23–27 July 2019; pp. 6529–6532. [Google Scholar]
- Ahmedt-Aristizabal, D.; Denman, S.; Nguyen, K.; Sridharan, S.; Dionisio, S.; Fookes, C. Understanding Patients’ Behavior: Vision-Based Analysis of Seizure Disorders. IEEE J. Biomed. Health Inform. 2019, 23, 2583–2591. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Liu, Y.; Lan, X. Facial Expression Recognition Using Spatial-Temporal Semantic Graph Network. In Proceedings of the IEEE International Conference on Image Processing, online, 25–28 October 2020; pp. 1961–1965. [Google Scholar]
- Liu, Z.; Dong, J.; Zhang, C.; Wang, L.; Dang, J. Relation modeling with graph convolutional networks for facial action unit detection. In Proceedings of the International MultiMedia Modeling Conference, Daejeon, Korea, 5–8 January 2020; pp. 489–501. [Google Scholar]
- Lo, L.; Xie, H.X.; Shuai, H.H.; Cheng, W.H. MER-GCN: Micro-Expression Recognition Based on Relation Modeling with Graph Convolutional Networks. In Proceedings of the International Conference on Multimedia Information Processing, Shenzhen, China, 9–11 April 2020; pp. 79–84. [Google Scholar]
- Wang, J.; Long, X.; Gao, Y.; Ding, E.; Wen, S. Graph-pcnn: Two stage human pose estimation with graph pose refinement. In Proceedings of the European Conference on Computer Vision, online, 23–28 August 2020; pp. 492–508. [Google Scholar]
- Zhao, L.; Peng, X.; Tian, Y.; Kapadia, M.; Metaxas, D.N. Semantic graph convolutional networks for 3d human pose regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3425–3435. [Google Scholar]
- Jin, S.; Liu, W.; Xie, E.; Wang, W.; Qian, C.; Ouyang, W.; Luo, P. Differentiable hierarchical graph grouping for multi-person pose estimation. In Proceedings of the European Conference on Computer Vision, online, 23–28 August 2020; pp. 718–734. [Google Scholar]
- Si, C.; Jing, Y.; Wang, W.; Wang, L.; Tan, T. Skeleton-based action recognition with spatial reasoning and temporal stack learning. In Proceedings of the European Conference on Computer Vision (ECCV), online, 8–14 September 2018; pp. 103–118. [Google Scholar]
- Shi, L.; Zhang, Y.; Cheng, J.; Lu, H. Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 12026–12035. [Google Scholar]
- Li, M.; Chen, S.; Chen, X.; Zhang, Y.; Wang, Y.; Tian, Q. Actional-structural graph convolutional networks for skeleton-based action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3595–3603. [Google Scholar]
- Arifoglu, D.; Charif, H.N.; Bouchachia, A. Detecting indicators of cognitive impairment via Graph Convolutional Networks. Eng. Appl. Artif. Intell. 2020, 89, 103401. [Google Scholar] [CrossRef]
- Guo, R.; Shao, X.; Zhang, C.; Qian, X. Sparse Adaptive Graph Convolutional Network for Leg Agility Assessment in Parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2020. [Google Scholar] [CrossRef]
- Guo, R.; Shao, X.; Zhang, C.; Qian, X. Multi-scale Sparse Graph Convolutional Network for the Assessment of Parkinsonian Gait. IEEE Trans. Multimed. 2021, 28, 2837–2848. [Google Scholar]
- Tsai, M.F.; Chen, C.H. Spatial Temporal Variation Graph Convolutional Networks (STV-GCN) for Skeleton-Based Emotional Action Recognition. IEEE Access 2021, 9, 13870–13877. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmedt-Aristizabal, D.; Armin, M.A.; Denman, S.; Fookes, C.; Petersson, L. Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future. Sensors 2021, 21, 4758. https://doi.org/10.3390/s21144758
Ahmedt-Aristizabal D, Armin MA, Denman S, Fookes C, Petersson L. Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future. Sensors. 2021; 21(14):4758. https://doi.org/10.3390/s21144758
Chicago/Turabian StyleAhmedt-Aristizabal, David, Mohammad Ali Armin, Simon Denman, Clinton Fookes, and Lars Petersson. 2021. "Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future" Sensors 21, no. 14: 4758. https://doi.org/10.3390/s21144758