Virtual Reality-Based Framework to Simulate Control Algorithms for Robotic Assistance and Rehabilitation Tasks through a Standing Wheelchair
Abstract
:1. Introduction
Main Contributions of the Study
2. Review of Literature
3. Problem Formulation
4. Robotic Standing Wheelchair Modeling
4.1. Kinematic Modeling
4.2. Standing Wheelchair Dynamic Model
5. Virtual Environment
5.1. External Resources
5.2. Graphics Engine
5.2.1. Virtual Scene
5.2.2. Scripting Stage
5.3. Inter-Process Communication—Shared Memory
6. Control Algorithm Design
Robustness Analysis
7. Experimental Results
7.1. Virtual Human–Wheelchair System Simulator
7.2. Control Scheme Implementation
7.2.1. Experiment 1
7.2.2. Experiment 2
7.3. Hardware Performance
7.4. Usability of the Simulated System
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Khaksari, M.; Fathi-Ashtiani, A.; Seifi, M.; Lotfi-Kashani, F.; Helm, F.A. Life Skills Training Effects on Adjustment and Mental Health in Physical-Motor Disabilities. Int. J. Indian Psychol. 2019, 7, 5–14. [Google Scholar]
- Ünver, B.; Erdem, E.U. Effects of Intellectual Disability on Gross Motor Function and Health Related Quality of Life in Cerebral Palsy. Clin. Exp. Health Sci. 2019, 9, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Straudi, S.; Manfredini, F.; Lamberti, N.; Martinuzzi, C.; Maietti, E.; Basaglia, N. Robot-Assisted Gait Training Is Not Superior to Intensive Overground Walking in Multiple Sclerosis with Severe Disability (the RAGTIME Study): A Randomized Controlled Trial. Mult. Scler. 2020, 26, 716–724. [Google Scholar] [CrossRef]
- Herrera, D.; Roberti, F.; Carelli, R.; Andaluz, V.; Varela, J.; Ortiz, J.; Canseco, P. Modeling and Path-Following Control of a Wheelchair in Human-Shared Environments. Int. J. Humanoid Robot. 2018, 15, 1850010. [Google Scholar] [CrossRef]
- Clark, C.; Sliker, L.; Sandstrum, J.; Burne, B.; Haggett, V.; Bodine, C. Development and Preliminary Investigation of a Semiautonomous Socially Assistive Robot (SAR) Designed to Elicit Communication, Motor Skills, Emotion, and Visual Regard (Engagement) from Young Children with Complex Cerebral Palsy: A Pilot Comparative Trial. Adv. Hum. Comput. Interact. 2019, 2019, 2614060. [Google Scholar] [CrossRef]
- Andaluz, V.H.; Ortiz, J.S.; Sanchéz, J.S. Bilateral Control of a Robotic Arm Through Brain Signals. In Augmented and Virtual Reality; De Paolis, L.T., Mongelli, A., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9254, pp. 355–368. ISBN 978-3-319-22887-7. [Google Scholar]
- Diez, P.F.; Torres Müller, S.M.; Mut, V.A.; Laciar, E.; Avila, E.; Bastos-Filho, T.F.; Sarcinelli-Filho, M. Commanding a Robotic Wheelchair with a High-Frequency Steady-State Visual Evoked Potential Based Brain–Computer Interface. Med. Eng. Phys. 2013, 35, 1155–1164. [Google Scholar] [CrossRef]
- Voilque, A.; Masood, J.; Fauroux, J.c.; Sabourin, L.; Guezet, O. Industrial Exoskeleton Technology: Classification, Structural Analysis, and Structural Complexity Indicator. In Proceedings of the 2019 Wearable Robotics Association Conference (WearRAcon), Scottsdale, AZ, USA, 25–27 March 2019; pp. 13–20. [Google Scholar]
- Jiménez, M.F.; Monllor, M.; Frizera, A.; Bastos, T.; Roberti, F.; Carelli, R. Admittance Controller with Spatial Modulation for Assisted Locomotion Using a Smart Walker. J. Intell. Robot. Syst. 2019, 94, 621–637. [Google Scholar] [CrossRef]
- Ortiz, J.S.; Andaluz, V.H.; Rivas, D.; Sánchez, J.S.; Espinosa, E.G. Human-Wheelchair System Controlled by Through Brain Signals. In Intelligent Robotics and Applications; Kubota, N., Kiguchi, K., Liu, H., Obo, T., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; Volume 9835, pp. 211–222. ISBN 978-3-319-43517-6. [Google Scholar]
- Hartman, A.; Nandikolla, V.K. Human-Machine Interface for a Smart Wheelchair. J. Robot. 2019, 2019, 4837058. [Google Scholar] [CrossRef]
- Brandão, A.S.; Felix, L.B.; Cavalieri, D.C.; de Sá, A.M.F.L.M.; Bastos-Filho, T.F.; Sarcinelli-Filho, M. Controlling Devices Using Biological Signals. Int. J. Adv. Robot. Syst. 2011, 8, 30. [Google Scholar] [CrossRef]
- Rakasena, E.P.G.; Herdiman, L. Electric Wheelchair with Forward-Reverse Control Using Electromyography (EMG) Control of Arm Muscle. J. Phys. Conf. Ser. 2020, 1450, 012118. [Google Scholar] [CrossRef]
- Ferreira, A.; Celeste, W.C.; Cheein, F.A.; Bastos-Filho, T.F.; Sarcinelli-Filho, M.; Carelli, R. Human-Machine Interfaces Based on EMG and EEG Applied to Robotic Systems. J. NeuroEng. Rehabil. 2008, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Chen, Y.; Zhang, Z.; He, S.; Zhang, R.; Liu, J.; Zhang, Y.; Shao, M.; Li, Y. An EOG-Based Wheelchair Robotic Arm System for Assisting Patients with Severe Spinal Cord Injuries. J. Neural Eng. 2019, 16, 026021. [Google Scholar] [CrossRef] [PubMed]
- Abdulghani, M.M.; Al-Aubidy, K.M.; Ali, M.M.; Hamarsheh, Q.J. Wheelchair Neuro Fuzzy Control and Tracking System Based on Voice Recognition. Sensors 2020, 20, 2872. [Google Scholar] [CrossRef]
- Nikpour, M.; Huang, L.; Al-Jumaily, A.M. Stability and Direction Control of a Two-Wheeled Robotic Wheelchair Through a Movable Mechanism. IEEE Access 2020, 8, 45221–45230. [Google Scholar] [CrossRef]
- Sago, Y.; Noda, Y.; Kakihara, K.; Terashima, K. Parallel Two-Wheel Vehicle with Underslung Vehicle Body. Mech. Eng. J. 2014, 1, DR0036. [Google Scholar] [CrossRef] [Green Version]
- Sulistiyawan, B.B.; Susmartini, S.; Herdiman, L. A Framework of Stand up Motorized Wheelchair as Universal Design Product to Help Mobility of the Motoric Disabled People. In AIP Conference Proceedings; AIP Publishing LLC: Surakarta, Indonesia, 2020; p. 030026. [Google Scholar]
- Román-Ibáñez, V.; Pujol-López, F.A.; Mora-Mora, H.; Pertegal-Felices, M.L.; Jimeno-Morenilla, A. A Low-Cost Immersive Virtual Reality System for Teaching Robotic Manipulators Programming. Sustainability 2018, 10, 1102. [Google Scholar] [CrossRef] [Green Version]
- Monroy, J.; Hernandez-Bennetts, V.; Fan, H.; Lilienthal, A.; Gonzalez-Jimenez, J. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments. Sensors 2017, 17, 1479. [Google Scholar] [CrossRef] [Green Version]
- Viglialoro, R.M.; Esposito, N.; Condino, S.; Cutolo, F.; Guadagni, S.; Gesi, M.; Ferrari, M.; Ferrari, V. Augmented Reality to Improve Surgical Simulation: Lessons Learned Towards the Design of a Hybrid Laparoscopic Simulator for Cholecystectomy. IEEE Trans. Biomed. Eng. 2019, 66, 2091–2104. [Google Scholar] [CrossRef]
- Song, J.; Hur, K.; Lee, J.; Lee, H.; Lee, J.; Jung, S.; Shin, J.; Kim, H. Hardware-in-the-Loop Simulation Using Real-Time Hybrid-Simulator for Dynamic Performance Test of Power Electronics Equipment in Large Power System. Energies 2020, 13, 3955. [Google Scholar] [CrossRef]
- Rodič, B. Self-Organizing Manufacturing Systems in Industry 4.0: Aspect of Simulation Modelling. Available online: www.igi-global.com/chapter/self-organizing-manufacturing-systems-in-industry-40/269071 (accessed on 8 June 2021).
- Mahoney, K.; Pierce, J.; Papo, S.; Imran, H.; Evans, S.; Wu, W.-C. Efficacy of Adding Activity of Daily Living Simulation Training to Traditional Pulmonary Rehabilitation on Dyspnea and Health-Related Quality-of-Life. PLoS ONE 2020, 15, e0237973. [Google Scholar] [CrossRef]
- Santos Pessoa de Melo, M.; Gomes da Silva Neto, J.; Jorge Lima da Silva, P.; Natario Teixeira, J.M.X.; Teichrieb, V. Analysis and Comparison of Robotics 3D Simulators. In Proceedings of the 2019 21st Symposium on Virtual and Augmented Reality (SVR), Rio de Janeiro, Brazil, 28–31 October 2019; pp. 242–251. [Google Scholar]
- Staranowicz, A.; Mariottini, G.L. A Survey and Comparison of Commercial and Open-Source Robotic Simulator Software. In Proceedings of the 4th International Conference on PErvasive Technologies Related to Assistive Environments, Heraklion Crete Greece, 25–27 May 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 1–8. [Google Scholar]
- Nurkkala, V.-M.; Kalermo, J.; Jarvilehto, T. Development of Exergaming Simulator for Gym Training, Exercise Testing and Rehabilitation. J. Commun. Comput. 2014, 11, 403–411. [Google Scholar]
- Vailland, G.; Grzeskowiak, F.; Devigne, L.; Gaffary, Y.; Fraudet, B.; Leblong, É.; Nouviale, F.; Pasteau, F.; Breton, R.L.; Guégan, S.; et al. User-Centered Design of a Multisensory Power Wheelchair Simulator: Towards Training and Rehabilitation Applications. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 77–82. [Google Scholar]
- Meyer, R.T.; Sergeeva, Y. Mixed-Reality Assistive Robotic Power Chair Simulator for Parkinson’s Tremor Testing. Med. Eng. Phys. 2020, 83, 142–147. [Google Scholar] [CrossRef]
- Grzeskowiak, F.; Babel, M.; Bruneau, J.; Pettre, J. Toward Virtual Reality-Based Evaluation of Robot Navigation among People. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Atlanta, GA, USA, 22–26 March 2020; pp. 766–774. [Google Scholar]
- Andaluz, V.H.; Chicaiza, F.A.; Gallardo, C.; Quevedo, W.X.; Varela, J.; Sánchez, J.S.; Arteaga, O. Unity3D-MatLab Simulator in Real Time for Robotics Applications. In Augmented Reality, Virtual Reality, and Computer Graphics; De Paolis, L.T., Mongelli, A., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; Volume 9768, pp. 246–263. ISBN 978-3-319-40620-6. [Google Scholar]
- Wu, M.; Dai, S.-L.; Yang, C. Mixed Reality Enhanced User Interactive Path Planning for Omnidirectional Mobile Robot. Appl. Sci. 2020, 10, 1135. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, L. Remote Human–Robot Collaboration: A Cyber–Physical System Application for Hazard Manufacturing Environment. J. Manuf. Syst. 2020, 54, 24–34. [Google Scholar] [CrossRef]
- Carvajal, C.P.; Méndez, M.G.; Torres, D.C.; Terán, C.; Arteaga, O.B.; Andaluz, V.H. Autonomous and Tele-Operated Navigation of Aerial Manipulator Robots in Digitalized Virtual Environments. In Augmented Reality, Virtual Reality, and Computer Graphics; De Paolis, L.T., Bourdot, P., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 10851, pp. 496–515. ISBN 978-3-319-95281-9. [Google Scholar]
- Amouri, A.; Mahfoudi, C.; Zaatri, A. Dynamic Modeling of a Spatial Cable-Driven Continuum Robot Using Euler-Lagrange Method. Int. J. Eng. Technol. Innov. 2020, 10, 60–74. [Google Scholar] [CrossRef]
- Ortiz, J.S.; Palacios-Navarro, G.; Andaluz, V.H.; Recalde, L.F. Three-Dimensional Unified Motion Control of a Robotic Standing Wheelchair for Rehabilitation Purposes. Sensors 2021, 21, 3057. [Google Scholar] [CrossRef]
- Acosta Núñez, J.F.; Andaluz Ortiz, V.H.; González-de-Rivera Peces, G.; Garrido Salas, J. Energy-Saver Mobile Manipulator Based on Numerical Methods. Electronics 2019, 8, 1100. [Google Scholar] [CrossRef] [Green Version]
- Schifino, G.; Cimolin, V.; Pau, M.; da Cunha, M.J.; Leban, B.; Porta, M.; Galli, M.; Souza Pagnussat, A. Functional Electrical Stimulation for Foot Drop in Post-Stroke People: Quantitative Effects on Step-to-Step Symmetry of Gait Using a Wearable Inertial Sensor. Sensors 2021, 21, 921. [Google Scholar] [CrossRef] [PubMed]
- Sauro, J.; Lewis, J.R. When Designing Usability Questionnaires, Does It Hurt to Be Positive? In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; p. 2215. [Google Scholar]
- Salvendy, G. Handbook of Human Factors and Ergonomics; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Guevara, B.; Martínez, A.; Gordón, A.; Constante, P. Sistema inmersivo de reconocimiento y control de gestos empleando realidad virtual para rehabilitación de las extremidades superiores en pacientes con daño cerebral adquirido (DCA). Iber. J. Inf. Syst. Technol. 2019, E19, 658–670. [Google Scholar]
- Maule, L.; Luchetti, A.; Zanetti, M.; Tomasin, P.; Pertile, M.; Tavernini, M.; Guandalini, G.M.A.; De Cecco, M. RoboEye, an Efficient, Reliable and Safe Semi-Autonomous Gaze Driven Wheelchair for Domestic Use. Technologies 2021, 9, 16. [Google Scholar] [CrossRef]
- Norouzi-Gheidari, N.; Hernandez, A.; Archambault, P.S.; Higgins, J.; Poissant, L.; Kairy, D. Feasibility, Safety and Efficacy of a Virtual Reality Exergame System to Supplement Upper Extremity Rehabilitation Post-Stroke: A Pilot Randomized Clinical Trial and Proof of Principle. Int. J. Environ. Res. Public Health 2019, 17, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivkov, M.; Blešić, I.; Dudić, B.; Pajtinková Bartáková, G.; Dudić, Z. Are Future Professionals Willing to Implement Service Robots? Attitudes of Hospitality and Tourism Students towards Service Robotization. Electronics 2020, 9, 1442. [Google Scholar] [CrossRef]
- Ortiz, J.S.; Palacios-Navarro, G.; Carvajal, C.P.; Andaluz, V.H. 3D Virtual Path Planning for People with Amyotrophic Lateral Sclerosis Through Standing Wheelchair. In Social Robotics; Ge, S.S., Cabibihan, J.-J., Salichs, M.A., Broadbent, E., He, H., Wagner, A.R., Castro-González, Á., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11357, pp. 181–191. ISBN 978-3-030-05203-4. [Google Scholar]
- Gull, M.A.; Bai, S.; Bak, T. A Review on Design of Upper Limb Exoskeletons. Robotics 2020, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Ossa, K.A.; Montenegro-Couto, E.H.; Longo, B.; Bissoli, A.; Sime, M.M.; Lessa, H.M.; Enriquez, I.R.; Frizera-Neto, A.; Bastos-Filho, T. Simulation System of Electric-Powered Wheelchairs for Training Purposes. Sensors 2020, 20, 3565. [Google Scholar] [CrossRef]
- Menga, G.; Ghirardi, M. Control of the Sit-To-Stand Transfer of a Biped Robotic Device for Postural Rehabilitation. Robotics 2019, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Javaid, M.; Haleem, A. Exploring Smart Material Applications for COVID-19 Pandemic Using 4D Printing Technology. J. Ind. Integr. Manag. 2020, 05, 481–494. [Google Scholar] [CrossRef]
- Serner, A.; Weir, A.; Tol, J.L.; Thorborg, K.; Lanzinger, S.; Otten, R.; Hölmich, P. Return to Sport After Criteria-Based Rehabilitation of Acute Adductor Injuries in Male Athletes: A Prospective Cohort Study. Orthop. J. Sports Med. 2020, 8, 232596711989724. [Google Scholar] [CrossRef] [PubMed]
- Nikpour, M.; Huang, L.; Al-Jumaily, A.M. An Approach on Velocity and Stability Control of a Two-Wheeled Robotic Wheelchair. Appl. Sci. 2020, 10, 6446. [Google Scholar] [CrossRef]
- Shahin, M.K.; Tharwat, A.; Gaber, T.; Hassanien, A.E. A Wheelchair Control System Using Human-Machine Interaction: Single-Modal and Multimodal Approaches. J. Intell. Syst. 2019, 28, 115–132. [Google Scholar] [CrossRef]
- Borsci, S.; Federici, S.; Lauriola, M. On the Dimensionality of the System Usability Scale: A Test of Alternative Measurement Models. Cogn. Process. 2009, 10, 193–197. [Google Scholar] [CrossRef]
- 3-SpaceTM MoCap Starter Bundle. Available online: https://yostlabs.com/product/3-space-mocap-starter-bundle/ (accessed on 4 May 2021).
- Abtahi, M.; Bahram Borgheai, S.; Jafari, R.; Constant, N.; Diouf, R.; Shahriari, Y.; Mankodiya, K. Merging FNIRS-EEG Brain Monitoring and Body Motion Capture to Distinguish Parkinsons Disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
Control System Configuration | Full Simulation (FS) | Rapid Control Prototyping (RCP) | Hardware in the Loop (HIL) | Deployed System (DS) |
---|---|---|---|---|
Control laws and signal processing | Simulated | Simulated | Deployed to target hardware | Deployed to target hardware |
Robot, feedback, and power converter | Simulated | Physical components | Simulated | Physical components |
Primary benefits | Easy to develop and make changes; full set of analysis tools. | Easy to modify control laws; full set of analysis tools. | Safely and quickly validate deployed control laws | Cost and reliability appropriate for field operation |
Initial Conditions | Desired Task | ||||
---|---|---|---|---|---|
- | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, J.S.; Palacios-Navarro, G.; Andaluz, V.H.; Guevara, B.S. Virtual Reality-Based Framework to Simulate Control Algorithms for Robotic Assistance and Rehabilitation Tasks through a Standing Wheelchair. Sensors 2021, 21, 5083. https://doi.org/10.3390/s21155083
Ortiz JS, Palacios-Navarro G, Andaluz VH, Guevara BS. Virtual Reality-Based Framework to Simulate Control Algorithms for Robotic Assistance and Rehabilitation Tasks through a Standing Wheelchair. Sensors. 2021; 21(15):5083. https://doi.org/10.3390/s21155083
Chicago/Turabian StyleOrtiz, Jessica S., Guillermo Palacios-Navarro, Víctor H. Andaluz, and Bryan S. Guevara. 2021. "Virtual Reality-Based Framework to Simulate Control Algorithms for Robotic Assistance and Rehabilitation Tasks through a Standing Wheelchair" Sensors 21, no. 15: 5083. https://doi.org/10.3390/s21155083