Supporting Visualization Analysis in Industrial Process Tomography by Using Augmented Reality—A Case Study of an Industrial Microwave Drying System †
Abstract
:1. Introduction
1.1. Industrial Process Tomography
1.2. HEPHAISTOS Heating Technology and Microwave Tomography
1.3. Visualization and Augmented Reality
- Propose an entire data processing and visualizing workflow of the IPT controlled industrial process.
- Pioneer the study of integrating the up-to-date AR technique to support IPT data visualization and on-site analysis for domain users.
2. Related Work
2.1. Microwave Tomography for Industrial Process Applications
2.2. Visualization and Augmented Reality
3. Data Processing and Visualizing Workflow
3.1. Practical Challenges
3.2. Microwave Tomography: Time-Reversal Imaging Algorithm
3.2.1. Scattering Model and Time Reversal Imaging
3.2.2. TR-DORT Simulation Results
3.3. Post-Imaging Segmentation
3.4. Volumetric Visualization
4. Augmented Reality for Visualization
- MWT-controlled industrial microwave drying process: A unique heating and drying process operated in a confined chamber with sophisticated industrial settings. In our study, the target is a microwave drying process for polymer foams undergone by the precise HEPHAISTOS microwave oven system shown in Figure 1.
- Users: Operators who control and run the drying equipment, or researchers who take onsite observations and collect data for further analysis.
- AR App: The core part of our proposed system. As a preliminary stage, the application is manifested as a mobile App run in iOS/Android mobile devices, and used for interactive and collaborative volumetric visualization and analysis. In comparison with our previous work [6], a multiple floating interface provided and overlaid in a real environment and containing information from our proposed data workflow is the main component of the application.
5. Discussion
5.1. Insights
5.2. Limitations
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ismail, I.; Gamio, J.; Bukhari, S.A.; Yang, W. Tomography for multi-phase flow measurement in the oil industry. Flow Meas. Instrum. 2005, 16, 145–155. [Google Scholar] [CrossRef]
- Tapp, H.; Peyton, A.; Kemsley, E.; Wilson, R. Chemical engineering applications of electrical process tomography. Sensors Actuators B Chem. 2003, 92, 17–24. [Google Scholar] [CrossRef]
- Nolet, G. Seismic Tomography: With Applications in Global Seismology and Exploration Geophysics; Springer Science & Business Media: Berlin, Germany, 2012; Volume 5. [Google Scholar]
- Primrose, K. Application of process tomography in nuclear waste processing. In Industrial Tomography; Elsevier: Amsterdam, The Netherlands, 2015; pp. 713–725. [Google Scholar]
- Plaskowski, A.; Beck, M.; Thorn, R.; Dyakowski, T. Imaging Industrial Flows: Applications of Electrical Process Tomography; Institute of Physics: Philadelphia, PA, USA, 1995. [Google Scholar]
- Zhang, Y.; Yadav, R.; Omrani, A.; Fjeld, M. A Novel Augmented Reality System To Support Volumetric Visualization in Industrial Process Tomography. In Proceedings of the 2021 Conference on Interfaces and Human Computer Interaction, Online, 21–23 July, 2021; pp. 3–9. [Google Scholar]
- Zhang, Y.; Nowak, A.; Rao, G.; Romanowski, A.; Fjeld, M. Is Industrial Tomography Ready for Augmented Reality? A Need-finding Study of How Augmented Reality Can Be Adopted by Industrial Tomography Experts. In Proceedings of the 2021 11th IEEE International Conference on Virtual Reality and Visualization (ICVRV), Nanchang, China, 17–20 October, 2021. in press. [Google Scholar]
- Omrani, A.; Link, G.; Jelonnek, J. A Multistatic Uniform Diffraction Tomographic Algorithm for Real-Time Moisture Detection. In Proceedings of the 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 8–11 December 2020; pp. 437–439. [Google Scholar] [CrossRef]
- Yadav, R.; Omrani, A.; Vauhkonen, M.; Link, G.; Lähivaara, T. Microwave Tomography for Moisture Level Estimation Using Bayesian Framework. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, Y.; Fjeld, M. Condition Monitoring for Confined Industrial Process Based on Infrared Images by Using Deep Neural Network and Variants. In Proceedings of the 2020 2nd International Conference on Image, Video and Signal Processing, Singapore, 20–22 March 2020; pp. 99–106. [Google Scholar]
- Zhang, Y.; Ma, Y.; Omrani, A.; Yadav, R.; Fjeld, M.; Fratarcangeli, M. Automatic image segmentation for microwave tomography (mwt) from implementation to comparative evaluation. In Proceedings of the 12th International Symposium on Visual Information Communication and Interaction, Shanghai, China, 20–22 September 2019; pp. 1–2. [Google Scholar]
- Zhang, Y.; Ma, Y.; Omrani, A.; Yadav, R.; Fjeld, M.; Fratarcangeli, M. Automated microwave tomography (Mwt) image segmentation: State-of-the-art implementation and evaluation. J. WSCG 2020, 2020, 126–136. [Google Scholar]
- Zhang, Y.; Fjeld, M.; Said, A.; Fratarcangeli, M. Task-Based Colormap Design Supporting Visual Comprehension in Process Tomography; EuroVis 2020—Short Papers; Kerren, A., Garth, C., Marai, G.E., Eds.; The Eurographics Association: Norrköping, Sweden, 2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Fjeld, M. “I Am Told to Be Happy”: An Exploration of Deep Learning in Affective Colormaps in Industrial Tomography. In Proceedings of the 2021 2nd International Conference on Artificial Intelligence and Information Systems (ICAIIS 2021), Chongqing, China, 28–30 May 2021; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Zhang, Y.; Fjeld, M.; Fratarcangeli, M.; Said, A.; Zhao, S. Affective Colormap Design for Accurate Visual Comprehension in Industrial Tomography. Sensors 2021, 21, 4766. [Google Scholar] [CrossRef]
- Daily, W.; Ramirez, A.; Binley, A.; LeBrecque, D. Electrical resistance tomography. Lead. Edge 2004, 23, 438–442. [Google Scholar] [CrossRef]
- Nowak, A.; Woźniak, M.; Rowińska, Z.; Grudzień, K.; Romanowski, A. Towards in-situ process tomography data processing using augmented reality technology. In Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, London, UK, 9–13 September 2019; pp. 168–171. [Google Scholar]
- Roussy, G.; Bennani, A.; Thiebaut, J. Temperature runaway of microwave irradiated materials. J. Appl. Phys. 1987, 62, 1167–1170. [Google Scholar] [CrossRef]
- Sun, Y. Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources. Ph.D. Thesis, KIT Scientific Publishing, Karlsruhe, Germany, 2016. [Google Scholar]
- Link, G.; Kayser, T.; Koester, F.; Weiss, R.; Betz, S.; Wiesehoefer, R.; Sames, T.; Boulkertous, N.; Teufl, D.; Zaremba, S.; et al. Faserverbund-Leichtbau mit Automatisierter Mikrowellenprozesstechnik Hoher Energieeffizienz (FLAME): Schlussbericht des BMBF-Verbundprojektes; KIT Scientific Reports; Technical Report; Karlsruher Institut für Technologie: Karlsruhe, Germany, 2015; Volume 7701. [Google Scholar] [CrossRef]
- Bykov, Y.V.; Rybakov, K.I.; Semenov, V.E. High-temperature microwave processing of materials. J. Phys. D Appl. Phys. 2001, 34, R55–R75. [Google Scholar] [CrossRef]
- Grudzien, K. Visualization system for large-scale silo flow monitoring based on ECT technique. IEEE Sens. J. 2017, 17, 8242–8250. [Google Scholar] [CrossRef]
- Nowak, A.; Zhang, Y.; Romanowski, A.; Fjeld, M. Augmented Reality with Industrial Process Tomography: To Support Complex Data Analysis in 3D Space. In Proceedings of the Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers (UbiComp’21), Online, 21–27 September 2021. [Google Scholar]
- Azuma, R.T. A survey of augmented reality. Presence Teleoper. Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Ferrario, A.; Weibel, R.; Feuerriegel, S. ALEEDSA: Augmented Reality for Interactive Machine Learning. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–8. [Google Scholar]
- Fraga-Lamas, P.; Fernández-Caramés, T.M.; Blanco-Novoa, Ó.; Vilar-Montesinos, M.A. A review on industrial augmented reality systems for the industry 4.0 shipyard. IEEE Access 2018, 6, 13358–13375. [Google Scholar] [CrossRef]
- de Souza Cardoso, L.F.; Mariano, F.C.M.Q.; Zorzal, E.R. A survey of industrial augmented reality. Comput. Ind. Eng. 2020, 139, 106159. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, H. Microwave Tomography for Industrial Process Imaging: Example Applications and Experimental Results. IEEE Antennas Propag. Mag. 2017, 59, 61–71. [Google Scholar] [CrossRef]
- Wu, Z.; McCann, H.; Davis, L.E.; Hu, J.; Fontes, A.; Xie, C.G. Microwave-tomographic system for oil- and gas-multiphase-flow imaging. Meas. Sci. Technol. 2009, 20, 104026. [Google Scholar] [CrossRef]
- Sabzevari, F.M.; Winter, R.S.C.; Oloumi, D.; Rambabu, K. A Microwave Sensing and Imaging Method for Multiphase Flow Metering of Crude Oil Pipes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1286–1297. [Google Scholar] [CrossRef]
- Tobon Vasquez, J.A.; Scapaticci, R.; Turvani, G.; Ricci, M.; Farina, L.; Litman, A.; Casu, M.R.; Crocco, L.; Vipiana, F. Noninvasive Inline Food Inspection via Microwave Imaging Technology: An Application Example in the Food Industry. IEEE Antennas Propag. Mag. 2020, 62, 18–32. [Google Scholar] [CrossRef]
- Becker, F.; Schwabig, C.; Krause, J.; Leuchs, S.; Krebs, C.; Gruna, R.; Kuter, A.; Langle, T.; Nuessler, D.; Beyerer, J. From Visual Spectrum to Millimeter Wave: A Broad Spectrum of Solutions for Food Inspection. IEEE Antennas Propag. Mag. 2020, 62, 55–63. [Google Scholar] [CrossRef]
- Ricci, M.; Crocco, L.; Vipiana, F. Microwave Imaging Device for In-Line Food Inspection. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Och, A.; Hölzl, P.A.; Schuster, S.; Scheiblhofer, S.; Zankl, D.; Pathuri-Bhuvana, V.; Weigel, R. High-Resolution Millimeter-Wave Tomography System for Nondestructive Testing of Low-Permittivity Materials. IEEE Trans. Microw. Theory Tech. 2021, 69, 1105–1113. [Google Scholar] [CrossRef]
- Omrani, A.; Yadav, R.; Vauhkonen, M.; Link, G.; Lähivaara, T.; Jelonnek, J. A combined microwave imaging algorithm for localization and moisture level estimation in multilayered media. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Yadav, R.; Vauhkonen, M.; Link, G.; Betz, S.; Lähivaara, T. Microwave tomography for estimating moisture content distribution in porous foam using neural networks. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Lähivaara, T.; Yadav, R.; Link, G.; Vauhkonen, M. Estimation of Moisture Content Distribution in Porous Foam Using Microwave Tomography with Neural Networks. IEEE Trans. Comput. Imaging 2020, 6, 1351–1361. [Google Scholar] [CrossRef]
- Mann, R.; Stanley, S.; Vlaev, D.; Wabo, E.; Primrose, K. Augmented-reality visualization of fluid mixing in stirred chemical reactors using electrical resistance tomography. J. Electron. Imaging 2001, 10, 620–630. [Google Scholar] [CrossRef]
- Chew, W.C. Waves and Fields in Inhomogenous Media; IEEE Press: Piscataway, NJ, USA, 1999. [Google Scholar]
- Chew, W.; Wang, Y. Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. IEEE Trans. Med. Imaging 1990, 9, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Tai, C.T. Dyadic Green’s Functions in Electromagnetic Theory; IEEE Press: Piscataway, NJ, USA, 1994. [Google Scholar]
- Yavuz, M.E.; Teixeira, F.L. Space–Frequency Ultrawideband Time-Reversal Imaging. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1115–1124. [Google Scholar] [CrossRef]
- Janalizadeh, R.C.; Zakeri, B. A Source-Type Best Approximation Method for Imaging Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1707–1710. [Google Scholar] [CrossRef]
- Sadeghi, S.; Mohammadpour-Aghdam, K.; Ren, K.; Faraji-Dana, R.; Burkholder, R.J. A Pole-Extraction Algorithm for Wall Characterization in Through-the-Wall Imaging Systems. IEEE Trans. Antennas Propag. 2019, 67, 7106–7113. [Google Scholar] [CrossRef]
- Sadeghi, S.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.; Burkholder, R.J. A Novel Algorithm for Wall Characterization in through the wall Imaging based on Spectral Analysis. In Proceedings of the 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Waterloo, ON, Canada, 19–22 August 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Soldatov, S.; Kayser, T.; Link, G.; Seitz, T.; Layer, S.; Jelonnek, J. Microwave cavity perturbation technique for high-temperature dielectric measurements. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–4. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Omrani, A.; Yadav, R.; Fjeld, M. Supporting Visualization Analysis in Industrial Process Tomography by Using Augmented Reality—A Case Study of an Industrial Microwave Drying System. Sensors 2021, 21, 6515. https://doi.org/10.3390/s21196515
Zhang Y, Omrani A, Yadav R, Fjeld M. Supporting Visualization Analysis in Industrial Process Tomography by Using Augmented Reality—A Case Study of an Industrial Microwave Drying System. Sensors. 2021; 21(19):6515. https://doi.org/10.3390/s21196515
Chicago/Turabian StyleZhang, Yuchong, Adel Omrani, Rahul Yadav, and Morten Fjeld. 2021. "Supporting Visualization Analysis in Industrial Process Tomography by Using Augmented Reality—A Case Study of an Industrial Microwave Drying System" Sensors 21, no. 19: 6515. https://doi.org/10.3390/s21196515