Detecting Fall Risk and Frailty in Elders with Inertial Motion Sensors: A Survey of Significant Gait Parameters
Abstract
:1. Introduction
2. Background Concepts
2.1. Frailty Definition and Scoring Tests
Frailty Scoring Tests
2.2. Gait Analysis Definitions
2.2.1. Gait Cycle Phases
2.2.2. Gait Parameters
- Step length (m): distance between the point of initial contact of one foot (HS) and the point of initial contact of the opposite foot (e.g., HS between the left and right feet);
- Stride Length (SL) (m): the distance between successive points of initial contact (HS) of the same foot;
- Step width (m): lateral separation between both feet. The differences among stride length, step length, and step width can be found in Figure 2;
- Step time (s): time between two consecutive heel strikes;
- Stride time (s) or Gait Cycle Time (GCT): time between two consecutive heel strikes by the same foot, as well as time needed to complete a full gait cycle;
- Gait speed (m/s): the stride length divided by the total GCT.
- Cadence (steps/min): number of steps in 1 min.
- Toe-off angle (degrees): the degree of inclination of the foot at the moment of take-off;
- Heel strike angle (degrees): the degree of inclination of the foot at the moment when the heel touches the ground;
- Clearance, max toe (m): the maximum height that the foot reaches during swing phase.
3. Literature Research Methodology
3.1. Search Strategy and Eligibility Criteria
- Older adult patients (≥60 y);
- Diseases: frailty or fall risk;
- The use of inertial sensors in gait analysis;
- The extraction of gait parameters from inertial data recorded during the walking, physical daily activity, and frailty assessment tests described;
- Discrimination between patients groups from gait parameters.
3.2. Data Extraction
3.3. Data Synthesis
4. Results
4.1. Study Characteristics
4.1.1. Patients
4.1.2. Inertial Sensor: Number and Location
4.1.3. Motion Test
4.1.4. Gait Parameters
4.1.5. Sensors’ Locations and Parameters
5. Discussion
5.1. Gait Parameters Related to Frailty
5.2. Gait Parameters Related to Fall Risk
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
IMU | Inertial Measurement Unit |
DPA | Daily Physical Activity |
TUG | Timed Up and Go test |
SPPB | Short Physical Performance Battery |
30-s CST | 30-second Chair Stand Test |
FTSS | Five-Times Sit to Stand |
GC | Gait Cycle |
HS | Heel Strike |
FFL | Foot Flat |
TO | Toe-Off |
DS | Double-Support |
HL | Heel Lift |
SL | Strike Length |
GCT | Gait Cycle Time |
L3 | Third Lumbar vertebra |
L5 | Fifth Lumbar vertebra |
References
- World Health Organization. Available online: https://www.who.int/health-topics/aging#tab=tab_1 (accessed on 8 February 2021).
- Ofori-Asenso, R.; Chin, K.L.; Mazidi, M.; Zomer, E.; Ilomaki, J.; Zullo, A.R.; Gasevic, D.; Ademi, Z.; Korhonen, M.J.; Logiudice, D.; et al. Global Incidence of Frailty and Prefrailty among Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. JAMA Netw. Open 2019, 2, e198398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The Timed Up and Go: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- García-Villamil, G.; Neira-Álvarez, M.; Huertas-Hoyas, E.; Ramón-Jiménez, A.; Rodríguez-Sánchez, C. A Pilot Study to Validate a Wearable Inertial Sensor for Gait Assessment in Older Adults with Falls. Sensors 2021, 21, 4334. [Google Scholar] [CrossRef]
- Muro-de-la Herran, A.; García-Zapirain, B.; Méndez-Zorrilla, A. Gait analysis methods: An overview of wearable and nonwearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [Green Version]
- Taborri, J.; Palermo, E.; Rossi, S.; Cappa, P. Gait partitioning methods: A systematic review. Sensors 2016, 16, 66. [Google Scholar] [CrossRef] [Green Version]
- Petraglia, F.; Scarcella, L.; Pedrazzi, G.; Brancato, L.; Puers, R.; Costantino, C. Inertial sensors versus standard systems in gait analysis: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2019, 55, 265–280. [Google Scholar] [CrossRef]
- Vavasour, G.; Giggins, O.M.; Doyle, J.; Kelly, D. How wearable sensors have been utilised to evaluate frailty in older adults: A systematic review. J. Neuroeng. Rehabil. 2021, 18, 112. [Google Scholar] [CrossRef]
- Zhong, R.; Rau, P.L.P. Are cost-effective technologies feasible to measure gait in older adults? A systematic review of evidence-based literature. Arch. Gerontol. Geriatr. 2020, 87, 103970. [Google Scholar] [CrossRef]
- Rucco, R.; Sorriso, A.; Liparoti, M.; Ferraioli, G.; Sorrentino, P.; Ambrosanio, M.; Baselice, F. Type and location of wearable sensors for monitoring falls during static and dynamic tasks in healthy elderly: A review. Sensors 2018, 18, 1613. [Google Scholar] [CrossRef] [Green Version]
- Mugueta-Aguinaga, I.; Garcia-Zapirain, B. Is technology present in frailty? Technology a back-up tool for dealing with frailty in the elderly: A systematic review. Aging Dis. 2017, 8, 176–195. [Google Scholar] [CrossRef] [Green Version]
- Dasenbrock, L.; Heinks, A.; Schwenk, M.; Bauer, J.M. Technology-based measurements for screening, monitoring and preventing frailty. Z. Fur Gerontol. Und Geriatr. 2016, 49, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Schwenk, M.; Mohler, J.; Wendel, C.; D’Huyvetter, K.; Fain, M.; Taylor-Piliae, R.; Najafi, B. Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: Baseline results of the Arizona frailty cohort study. Gerontology 2015, 61, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.; Pavic, A.; Goodwin, V.A. Wearable inertial sensors to measure gait and posture characteristic differences in older adult fallers and non-fallers: A scoping review. Gait Posture 2020, 76, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, L.; Castaldo, R.; Pecchia, L. Wearable Inertial Sensors for Fall Risk Assessment and Prediction in Older Adults: A Systematic Review and Meta-Analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 573–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howcroft, J.; Lemaire, E.D.; Kofman, J.; McIlroy, W.E. Dual-task elderly gait of prospective fallers and non-fallers: A wearable sensor-based analysis. Sensors 2018, 18, 1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zampogna, A.; Mileti, I.; Palermo, E.; Celletti, C.; Paoloni, M.; Manoni, A.; Mazzetta, I.; Costa, G.D.; Pérez-López, C.; Camerota, F.; et al. Fifteen years of wireless sensors for balance assessment in neurological disorders. Sensors 2020, 20, 3247. [Google Scholar] [CrossRef] [PubMed]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Review of fall risk assessment in geriatric populations using inertial sensors. J. Neuroeng. Rehabil. 2013, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Schwenk, M.; Howe, C.; Saleh, A.; Mohler, J.; Grewal, G.; Armstrong, D.; Najafi, B. Frailty and technology: A systematic review of gait analysis in those with frailty. Gerontology 2013, 60, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Xue, Q.L. The Frailty Syndrome: Definition and Natural History. Clin. Geriatr. Med. 2011, 27, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA—J. Am. Med Assoc. 2011, 305, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millor, N.; Lecumberri, P.; Gomez, M.; Martinez, A.; Martinikorena, J.; Rodriguez-Manas, L.; Garcia-Garcia, F.J.; Izquierdo, M. Gait Velocity and Chair Sit-Stand-Sit Performance Improves Current Frailty-Status Identification. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2018–2025. [Google Scholar] [CrossRef]
- Greene, B.R.; Doheny, E.P.; Kenny, R.A.; Caulfield, B. Classification of frailty and falls history using a combination of sensor-based mobility assessments. Physiol. Meas. 2014, 35, 2053. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.; Kim, J.; Kim, M.; Won, C.W.; Mun, K.R. Frailty Assessment Using Temporal Gait Characteristics and a Long Short-Term Memory Network. IEEE J. Biomed. Health Inform. 2021, 3649–3658. [Google Scholar] [CrossRef] [PubMed]
- Del Din, S.; Lewis, E.G.; Gray, W.K.; Collin, H.; Kissima, J.; Rochester, L.; Dotchin, C.; Urasa, S.; Walker, R. Monitoring Walking Activity with Wearable Technology in Rural-dwelling Older Adults in Tanzania: A Feasibility Study Nested within a Frailty Prevalence Study. Exp. Aging Res. 2020, 46, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Apsega, A.; Petrauskas, L.; Alekna, V.; Daunoraviciene, K.; Sevcenko, V.; Mastaviciute, A.; Vitkus, D.; Tamulaitiene, M.; Griskevicius, J. Wearable sensors technology as a tool for discriminating frailty levels during instrumented gait analysis. Appl. Sci. 2020, 10, 8451. [Google Scholar] [CrossRef]
- Pradeep Kumar, D.; Toosizadeh, N.; Mohler, J.; Ehsani, H.; Mannier, C.; Laksari, K. Sensor-based characterization of daily walking: A new paradigm in prefrailty/frailty assessment. BMC Geriatr. 2020, 20, 164. [Google Scholar] [CrossRef]
- Porta, S.; Martínez, A.; Millor, N.; Gómez, M.; Izquierdo, M. Relevance of sex, age and gait kinematics when predicting fall-risk and mortality in older adults. J. Biomech. 2020, 105, 109723. [Google Scholar] [CrossRef]
- Jansen, C.P.; Toosizadeh, N.; Mohler, M.J.; Najafi, B.; Wendel, C.; Schwenk, M. The association between motor capacity and mobility performance: Frailty as a moderator. Eur. Rev. Aging Phys. Act. 2019, 16, 1–8. [Google Scholar] [CrossRef]
- Razjouyan, J.; Naik, A.D.; Horstman, M.J.; Kunik, M.E.; Amirmazaheri, M.; Zhou, H.; Sharafkhaneh, A.; Najafi, B. Wearable sensors and the assessment of frailty among vulnerable older adults: An observational cohort study. Sensors 2018, 18, 1336. [Google Scholar] [CrossRef] [Green Version]
- Bizovska, L.; Svoboda, Z.; Janura, M.; Bisi, M.C.; Vuillerme, N. Local dynamic stability during gait for predicting falls in elderly people: A one-year prospective study. PLoS ONE 2018, 13, e0197091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jehu, D.; Nantel, J. Fallers with Parkinson’s disease exhibit restrictive trunk control during walking. Gait Posture 2018, 65, 246–250. [Google Scholar] [CrossRef]
- Rahemi, H.; Nguyen, H.; Lee, H.; Najafi, B. Toward smart footwear to track frailty phenotypes—Using propulsion performance to determine frailty. Sensors 2018, 18, 1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritt, M.; Schülein, S.; Lubrich, H.; Bollheimer, L.C.; Sieber, C.C.; Gassmann, K.G. High-technology based gait assessment in frail people: Associations between spatio-temporal and three-dimensional gait characteristics with frailty status across four different frailty measures. J. Nutr. Health Aging 2017, 21, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Kikkert, L.H.; De Groot, M.H.; Van Campen, J.P.; Beijnen, J.H.; Hortobágyi, T.; Vuillerme, N.; Lamoth, C.C. Gait dynamics to optimize fall risk assessment in geriatric patients admitted to an outpatient diagnostic clinic. PLoS ONE 2017, 12, e0178615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohler, M.J.; Wendel, C.S.; Taylor-Piliae, R.E.; Toosizadeh, N.; Najafi, B. Motor Performance and Physical Activity as Predictors of Prospective Falls in Community-Dwelling Older Adults by Frailty Level: Application of Wearable Technology. Gerontology 2016, 62, 654–664. [Google Scholar] [CrossRef] [Green Version]
- Ihlen, E.A.; Weiss, A.; Bourke, A.; Helbostad, J.L.; Hausdorff, J.M. The complexity of daily life walking in older adult community-dwelling fallers and non-fallers. J. Biomech. 2016, 49, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Thiede, R.; Toosizadeh, N.; Mills, J.L.; Zaky, M.; Mohler, J.; Najafi, B. Gait and balance assessments as early indicators of frailty in patients with known peripheral artery disease. Clin. Biomech. 2016, 32, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Galán-Mercant, A.; Cuesta-Vargas, A.I. Clinical frailty syndrome assessment using inertial sensors embedded in smartphones. Physiol. Meas. 2015, 36, 1929–1942. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ramírez, A.; Martinikorena, I.; Gómez, M.; Lecumberri, P.; Millor, N.; Rodríguez-Mañas, L.; García García, F.J.; Izquierdo, M. Frailty assessment based on trunk kinematic parameters during walking. J. Neuroeng. Rehabil. 2015, 12, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Conditions | Definition | Value |
---|---|---|
1. Low physical activity level | Exercise hours or calories per week | 0: No 1: Yes |
2. Slowness | Slow walking speed (m/s) | 0: No, 1: yes |
3. Poor endurance and energy | Indicated by self-report of exhaustion. | 0: No, 1: yes |
4. Weakness | Grip strength in the lowest 20% at baseline | 0: No, 1: yes |
5. Shrinking | Unintentional weight loss | 0: No, 1: Yes |
Frailty Score | Sum of the value of the 5 conditions | 0: Robust |
1–2: prefrail | ||
3–5: frail |
Author, Year | Condition * | Technology ** | M | Relevant Conclusions |
---|---|---|---|---|
Vavasour, 2021 [10] | Frailty | Wearable sensors | 29 | Postural transitions, number of steps, and percentage of time in DPA and intensity of DPA together were the most frequently measured parameters followed closely by gait speed. All but one study demonstrated an association between PA and level of frailty. All reports of gait speed indicated correlation with frailty. |
Patel, 2020 [16] | Falls | Inertial sensors | 35 | A single sensor located on the lower trunk (the most effective location) is enough to determine fall risk. |
Zampogna, 2020 [19] | Others | Wearable sensors | 62 | Wireless sensors are a sensitive and objective tool for domestic measurement of control balance, postural dysfunction, gait disorders, or fall risk, providing data in free-living conditions and long-term monitoring. Most of the studies included used inertial devices. |
Zhong, 2020 [11] | Falls | All | 21 | Parameters related to falls: gait speed, stride length, frequency, acceleration RMS, step-to-step consistency, autocorrelation and harmonic ratio. |
Petraglia, 2019 [9] | Others | Inertial sensors | 16 | Good concordance between classic gait analysis methods and inertial sensors. |
Montesinos, 2018 [17] | Falls | Inertial sensors | 13 | Lower back is the most common location. The most significant parameters related to fallers are: RMS acceleration mediolateral, No. of steps, time of TUG test, and step time. |
Rucco, 2018 [12] | Falls | Wearable sensors | 42 | Accelerometers and gyroscopes are the most used sensors, while trunk is the most common location. |
Mugueta-Aguinaba, 2017 [13] | Frailty | All | 104 | Supports the use of different technologies in frailty: prevention, care, diagnosis, and treatment. |
Dasenbrock, 2016 [14] | Frailty | All | 28 | Parameters to diagnose frailty: stride length, double support time, gait speed, and cadence. |
Taborri, 2016 [8] | - | All | 32 | Feet are the most useful location for accelerometers and gyroscopes in gait analysis. |
Howcroft, 2013 [20] | Falls | Inertial sensors | 40 | Inertial sensors are promising sensors for fall risk assessment, and lower trunk is the most common location. |
Schwenk, 2013 [21] | Frailty | All | 11 | Relevant gait parameters to discriminate between frail groups: gait speed, gait variability, cadence, step width variability, step length, and double-support time. |
Author, Year | Patients | IMUs and Location | Motion Tests |
---|---|---|---|
Jung, 2021 [26] | Frailty N = 74 % healthy = 35 | Xsens MVN 1 Gyr I = 2 Feet | 7 m walking test |
García-Villamil, 2021 [6] | Fall risk N = 21 % healthy = 47 | G-STRIDE (custom-made) 3 Acc + 3 Gyr I = 1 Instep | 30 min walking test |
Del Din, 2020 [27] | Frailty N = 65 % healthy = 55 | Axivity AX3 3 Acc I = 1 L5 | Daily physical activity |
Apsega, 2020 [28] | Frailty N = 133 % healthy = 23 | Shimmer 3 Acc + 3 Gyr I = 6 thighs, shins, and feet | 3 m TUG test |
Padreep-Kumar, 2020 [29] | Frailty N = 126 % healthy = 34 | PAMSys 1 Acc I = 1 Sternum | Daily physical activity |
Porta, 2020 [30] | Fall risk N = 261 % healthy = 49 | Xsens MTx 3 Acc + 3 Gyr I = 1 Back | 3 m walking test |
Jansen, 2019 [31] | Frailty N = 112 % healthy = 47 | PAMSys 3 Acc I = 1 Sternum | Dayly physical activity |
LEGSys 3 Acc + 3 Gyr I = 5 Shank, thighs, and lower back | 4.57 m normal walking test and 10 m fast walking test | ||
Razjouyan, 2018 [32] | Frailty and mind N = 163 % healthy = 26 | PAMSys 3 Acc I = 1 Chest | Daily physical activity |
Bizovska, 2018 [33] | Fall risk N = 131 % healthy = 61 | Trigno Wireless System 3 Acc I = 3 L5 and shanks | 5 min walking test |
Jehu, 2018 [34] | Fall risk and Parkinson’s N = 42 % healthy = 32 | APDM 3 Acc I = 6 wrists, ankles, L5, and sternum | 30 s walking test |
Rahemi, 2018 [35] | Frailty N = 161 % healthy = 30 | LEGsys 1 Gyr I = 2 Shins | 4.57 m walking test |
Howcroft, 2018 [18] | Fall risk N = 75 % healthy = 62 | X16-1C 3 Acc I = 3 Lateral shanks and pelvis | 7.62 m walking single-task and dual-task test |
Ritt, 2017 [36] | Frailty N = 123 % healthy = 28 | Shimmer 2R 3 Acc + 3 Gyr I = 2 Heels | Simple walking test |
Millor, 2017 [24] | Frailty N = 718 % healthy = 27 | Xsens MTx 3 Acc + 3 Gyr I = 1 L3 | 30-s Chair Stand Test and 3 m gait velocity test |
Kikkert, 2017 [37] | Fall risk N = 61 % healthy = 59 | Dynaport, MiniMod 2 Acc I = 1 L5 | 160 m walking test |
Mohler, 2016 [38] | Frailty and fall risk N = 119 % healthy = 36 | LEGSys 3 Acc + 3 Gyr I = 5 Shins, thighs, and lower back | 4.57 m walking test |
PAMSys 3 Acc I = 1 Sternum | Daily physical activity | ||
Ihlen, 2016 [39] | Frailty and fall risk N = 71 % healthy = 54 | Dynaport Hybrid, McRoberts 3 Acc I = 1 Lower back | Daily physical activity |
Thiede, 2016 [40] | Frailty and peripheral artery disease N = 17 % healthy = 47 | LEGSys 3 Acc + 3 Gyr I = 5 Shins, thighs, and trunk | Normal walking, dual-task overground walk (counting 100 to 1), and fast walk (minimum of 25 steps) |
Galan-Mercant, 2015 [41] | Frailty N = 30 % healthy = 53 | Iphone4 3 Acc + 3 Gyr I = 1 Sternum | 10 m expanded TUG test |
Martinez-Ramirez, 2015 [42] | Frailty N = 718 % healthy = 45 | MTx Xsens 3 Acc + 3 Gyr I = 1 Lumbar spine | 3 m walking test |
Schwenk, 2015 [15] | Frailty N=125 % healthy = 35 | LEGSys 3 Acc + 3 Gyr I = 5 Shanks, thighs, and lower back | 4.57 m walking single- and dual-task test |
PAMSys 3 Acc I = 1 Sternum | Daily physical activity | ||
Greene, 2014 [25] | Frailty and fall risk N = 124 % healthy = 46 | Shimmer 1 Acc + 1 Gyr I = 5 Shins, thigh, L5, and sternum | TUG, Five-Times Sit to Stand, and balance |
Parameter/Reference | [26] | [27] | [28] | [29] | [31] | [32] | [35] | [36] | [24] | [40] | [41] | [42] | [15] | [25] | T | Sig | NSig |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
General Parameters | |||||||||||||||||
Cadence (steps/min) | 2 | 0 | 2 | 1 | 1 | ||||||||||||
Stride Length (m) | 2 | 1 | 1 | 0 | |||||||||||||
Step Time (s) | 2 | 2 | 1 | 1 | 4 | 2 | 0 | ||||||||||
Stride Time (s) | 2 | 2 | 2 | 1 | 4 | 3 | 0 | ||||||||||
Gait Speed (m/s) | 2 | 2 | 1 | 1 | 2 | 2 | 6 | 4 | 0 | ||||||||
Variability General Params. | |||||||||||||||||
Stride Length Var (%) | 0 | 1 | 0 | 1 | |||||||||||||
Stride Time Var (%) | 0 | 1 | 0 | 1 | |||||||||||||
Gait Variability (%) | 2 | 1 | 1 | 0 | |||||||||||||
Gait Symmetry (%) | 0 | 1 | 0 | 1 | |||||||||||||
Speed Variability | 2 | 1 | 1 | 0 | |||||||||||||
Stride/Step Regularity | 2 | 1 | 1 | 0 | |||||||||||||
Temporal Params. | |||||||||||||||||
Stance Phase Time (s) | 1 | 2 | 2 | 1 | 0 | ||||||||||||
Swing Phase Time (s) | 1 | 2 | 2 | 1 | 0 | ||||||||||||
Double Support Time (s) | 2 | 2 | 2 | 2 | 4 | 4 | 0 | ||||||||||
Propulsion Duration (s) | 2 | 1 | 1 | 0 | |||||||||||||
Toe Specific Params. | |||||||||||||||||
Toe-Off Angle () | 2 | 1 | 1 | 0 | |||||||||||||
Heal Strike Angle () | 2 | 1 | 1 | 0 | |||||||||||||
Max Toe (m) | 2 | 1 | 1 | 0 | |||||||||||||
Specific Speeds | |||||||||||||||||
Toe-Off Speed (/s) | 2 | 1 | 1 | 0 | |||||||||||||
Midswing Speed (/s) | 2 | 0 | 2 | 1 | 1 | ||||||||||||
Mid Stance Speed (/s) | 2 | 1 | 1 | 0 | |||||||||||||
Propulsion Acceleration (2/s) | 2 | 1 | 1 | 0 | |||||||||||||
Speed Norm (degree/s) | 2 | 1 | 1 | 0 | |||||||||||||
Trunk-Derived Params. RMS Trunk Acc. | 2 | 1 | 1 | 0 | |||||||||||||
THD Trunk Acc. | 2 | 1 | 1 | 0 | |||||||||||||
Trunk Sway | 2 | 1 | 1 | 0 | |||||||||||||
DPA Params. | |||||||||||||||||
No. of Steps/Day or Walking Percentage/Day | 2 | 2 | 2 | 2 | 2 | 5 | 5 | 0 | |||||||||
Time in bed | 2 | 1 | 1 | 0 | |||||||||||||
Max. No. of Steps/Bout | 2 | 2 | 2 | 2 | 0 | ||||||||||||
Classic Test Params. | |||||||||||||||||
TUG Kinematic Param. | 2 | 2 | 2 | 2 | 0 | ||||||||||||
30-s Chair Test k.p. | 2 | 1 | 1 | 0 | |||||||||||||
Five-Times Sit to Stand Acc. | 2 | 1 | 1 | 0 |
Parameter/Reference | [6] | [30] | [34] | [33] | [18] | [37] | [38] | [39] | T | Sig | NSig |
---|---|---|---|---|---|---|---|---|---|---|---|
General and Temporal Params. | |||||||||||
Stride Length (m) | 2 | 0 | 2 | 1 | 1 | ||||||
Stride Time (s) | 0 | 2 | 0 | 3 | 1 | 2 | |||||
Gait Speed (m/s) | 2 | 0 | 2 | 0 | 4 | 2 | 2 | ||||
Cadence (steps/min) | 1 | 1 | 1 | 0 | |||||||
Double Support Time (s) | 0 | 1 | 0 | 0 | |||||||
Swing Phase Time (s) | 1 | 1 | 0 | 0 | |||||||
Variability Params. | |||||||||||
Stride Length Var (%) | 0 | 1 | 2 | 0 | 1 | ||||||
Stride Time Var (%) | 1 | 1 | 0 | 0 | |||||||
Swing Time Var (%) | 0 | 1 | 0 | 1 | |||||||
Gait Symmetry | 0 | 1 | 0 | 1 | |||||||
DPA Params. and Others | |||||||||||
No. of Steps/Day or Walking Percentage/Day | 2 | 1 | 1 | 0 | |||||||
Total Distance per Bout/Test | 2 | 1 | 1 | 0 | |||||||
No. of Steps per Bout/Test | 1 | 1 | 0 | 0 | |||||||
Total Time Walking per Bout/Test | 0 | 1 | 0 | 1 | |||||||
Trunk and Stability Params. | |||||||||||
Trunk Accelerations | 2 | 2 | 2 | 2 | 0 | ||||||
Trunk Stability | 2 | 1 | 1 | 0 | |||||||
Trunk Control (k.p) | 2 | 1 | 1 | 0 | |||||||
Center of Pressure (CoP) Deviations | 2 | 1 | 1 | 0 | |||||||
Dynamic Stability | 2 | 1 | 1 | 0 |
Single locations | Combinations | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameter/Location | Feet Instep Heels | Chest Sternum | Trunk L3 L5 | Shins | A | B | C | D | E |
General Parameters | |||||||||
Cadence (steps/min) | [6] | [42] | [28] | ||||||
Stride Length (m) | [6] | [15,38] | |||||||
Step Time (s) | [26] | [29] | [42] | [15] | |||||
Stride Time (s) | [26] | [29] | [37] | [15,38] | [33] | [28] | |||
Gait Speed (m/s) | [6] | [24,37,42] | [15,31,38,40] | [33] | [28] | ||||
Variability Params. | |||||||||
Stride Length Var (%) | [6] | [29] | [30] | ||||||
Stride Time Var (%) | [29] | [30] | |||||||
Gait Variability (%) | [29] | ||||||||
Gait Symmetry (%) | [29] | [38] | |||||||
Speed Variability | [40] | ||||||||
Stride/Step Regularity | [42] | ||||||||
Swing Time Var (%) | [6] | ||||||||
Temporal Params. | |||||||||
Stance Phase Time (s) | [26] | [28] | |||||||
Swing Phase Time (s) | [6,26] | [28] | |||||||
Double Support Time (s) | [26] | [15,38,40] | [28] | ||||||
Propulsion Duration (s) | [35] | ||||||||
Toe Specific Params. | |||||||||
Toe-Off Angle () | [36] | ||||||||
Heal Strike Angle () | [36] | ||||||||
Max Toe (m) | [36] | ||||||||
Specific Speeds | |||||||||
Toe-Off Speed (/s) | [35] | ||||||||
Mid-Swing Speed (/s) | [35] | [40] | |||||||
Mid Stance Speed (/s) | [35] | ||||||||
Propulsion Acceleration (2/s) | [35] | ||||||||
Speed Norm (/s) | [35] | ||||||||
DPA Params and Others. | |||||||||
No. of Steps/Day or Walking Percentage/Day | [15,29,31,32,38] | [27] | |||||||
Time in Bed | [32] | ||||||||
Max. No. of Steps/Bout | [29,31] | ||||||||
Total Distance per Bout/Test | [6] | ||||||||
No. of Steps per Bout/Test | [6] | ||||||||
Total Time Walking per Bout/Test | [6] | ||||||||
Classic Tests Params. | |||||||||
TUG Kinematic Param. | [41] | [25] | |||||||
30-s Chair Test k.p. | [24] | ||||||||
Five-Times Sit to Stand Acc. | [25] | ||||||||
Trunk and Stability Params. | |||||||||
Trunk Accelerations | [37,39] | ||||||||
Trunk Stability | [33] | ||||||||
Trunk Control (k.p) | [34] | ||||||||
Center of Pressure (CoP) Deviations | [18] | ||||||||
Dynamic Stability | [18] | ||||||||
RMS Trunk Acc. | [42] | ||||||||
THD Trunk Acc. | [42] | ||||||||
Trunk Sway | [40] |
R | Parameter | T | Sig | NSig |
---|---|---|---|---|
1 | No. of Steps/Day or Walking Percentage/Day | 5 | 5 | 0 |
2 | Gait Speed (m/s) | 6 | 4 | 0 |
3 | Double Support Time (s) | 4 | 4 | 0 |
4 | Stride Time (s) | 4 | 3 | 0 |
5 | Step Time (s) | 4 | 2 | 0 |
6 | TUG Kinematic Param and Max Number of Steps per Bout | 2 | 2 | 0 |
7 | Stance Phase Time (s) and Swing Phase Time (s) | 2 | 1 | 0 |
8 | Cadence (steps/min) and Midswing Speed (/s) | 2 | 1 | 1 |
9 | Stride Length (m), Gait Variability (%), Speed Variability, Stride/Step Regularity, Propulsion Duration (s), Toe-Off Angle (), Heal Strike Angle (), Max Toe (m), Toe-Off Speed (/s), Mid Stance Speed (/s), Propulsion Acceleration (2/s), Speed Norm (/s), Root-Mean-Squared (RMS) and Total Harmonic Distortion (THD) from Trunk Accelerations, Trunk Sway, Time in Bed, 30-s Chair Test Kinematic Parameters, Five-Times Sit to Stand Accelerations | 1 | 1 | 0 |
10 | Stride Length Var (%), Stride Width Var (%), and Gait Symmetry (%) | 1 | 0 | 1 |
R | Parameter | T | Sig | NSig |
---|---|---|---|---|
1 | Trunk Accelerations | 2 | 2 | 0 |
2 | Gait Speed (m/s) | 4 | 2 | 2 * |
3 | Stride Time (s) | 3 | 1 | 2 * |
4 | Stride Length (m) | 2 | 1 | 1 * |
5 | Cadence (steps/min), Total Distance per Bout/Test, Trunk Stability, Trunk Control (Kinematic Parameters), Center of Pressure (CoP) Deviations, Dynamic Stability | 1 | 1 | 0 |
6 | Swing Phase Time (s), Number of Steps per Bout/Test, and Stride Time Var (%) | 1 | 0 | 0 |
7 | Stride Length Var (%) | 2 | 0 | 1 |
8 | Double-Support Time (s), Swing Time Var (%), Gait Symmetry, Total Time Walking per Bout/Test | 1 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Ruiz, L.; Jimenez, A.R.; Garcia-Villamil, G.; Seco, F. Detecting Fall Risk and Frailty in Elders with Inertial Motion Sensors: A Survey of Significant Gait Parameters. Sensors 2021, 21, 6918. https://doi.org/10.3390/s21206918
Ruiz-Ruiz L, Jimenez AR, Garcia-Villamil G, Seco F. Detecting Fall Risk and Frailty in Elders with Inertial Motion Sensors: A Survey of Significant Gait Parameters. Sensors. 2021; 21(20):6918. https://doi.org/10.3390/s21206918
Chicago/Turabian StyleRuiz-Ruiz, Luisa, Antonio R. Jimenez, Guillermo Garcia-Villamil, and Fernando Seco. 2021. "Detecting Fall Risk and Frailty in Elders with Inertial Motion Sensors: A Survey of Significant Gait Parameters" Sensors 21, no. 20: 6918. https://doi.org/10.3390/s21206918