Security Mechanisms of a Mobile Health Application for Promoting Physical Activity among Older Adults
Abstract
:1. Introduction
2. Background and Related Work
3. Materials and Methods
3.1. The SmartWalk System
3.2. Security Mechanisms Implementation and Validation
4. Results
4.1. Implementation of Security Mechanisms
4.2. Security Mechanisms Validation
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Population Ageing 2017; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2017. [Google Scholar]
- Kontis, V.; Bennett, J.E.; Mathers, C.D.; Li, G.; Foreman, K.; Ezzati, M. Future life expectancy in 35 industrialised countries: Projections with a Bayesian model ensemble. Lancet 2017, 389, 1323–1335. [Google Scholar] [CrossRef] [Green Version]
- Sixsmith, A.; Sixsmith, J. Ageing in place in the United Kingdom. Ageing Int. 2008, 32, 219–235. [Google Scholar] [CrossRef]
- World Health Organization. Active Ageing: A Policy Framework; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- Cosco, T.D.; Prina, A.M.; Perales, J.; Stephan, B.; Brayne, C. Operational definitions of successful aging: A systematic review. Int. Psychogeriatr. 2014, 26, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Van Hoof, J.; Kazak, J.K.; Perek-Białas, J.M.; Peek, S. The challenges of urban ageing: Making cities age-friendly in Europe. Int. J. Environ. Res. Public Health 2018, 15, 2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Decade of Healthy Ageing: Baseline Report; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Van Grootven, B.; van Achterberg, T. The European Union’s Ambient and Assisted Living Joint Programme: An evaluation of its impact on population health and well-being. Health Inform. J. 2019, 25, 27–40. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Age-Friendly Environments in Europe. In A Handbook of Domains for Policy Action; WHO Regional Office: Copenhagen, Denmark, 2017. [Google Scholar]
- Bellagente, P.; Crema, C.; Depari, A.; Ferrari, P.; Flammini, A.; Lanfranchi, G.; Lenzi, G.; Maddiona, M.; Rinaldi, S.; Sisinni, E.; et al. Remote and non-invasive monitoring of elderly in a smart city context. In Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS), Seoul, Korea, 12–14 March 2018; pp. 1–6. [Google Scholar]
- Vargas-Acosta, R.; Becerra, D.; Gurbuz, O.; Villanueva-Rosales, N.; Nunez-Mchiri, G.G.; Cheu, R.L. Smart Mobility for Seniors through the Urban Connector. In Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco, 14–17 October 2019; pp. 241–246. [Google Scholar]
- An, D.; Wang, J.; Wang, P.; Yang, Y.; Pu, Y.; Ke, H.; Chen, Y. Beyond Walking: Improving Urban Mobility Equity in the Age of Information. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, San Diego, CA, USA, 16–20 July 2020; pp. 204–209. [Google Scholar]
- Matos, C.M.; Matter, V.K.; Martins, M.G.; da Rosa Tavers, J.E.; Wolf, A.S.; Buttenbender, P.C.; Barbosa, J.L.V. Towards a Collaborative Model to Assist People with Disabilities and the Elderly People in Smart Assistive Cities. J. Univers. Comput. Sci. 2021, 27, 65–86. [Google Scholar] [CrossRef]
- Loos, E.; Sourbati, M.; Behrendt, F. The Role of Mobility Digital Ecosystems for Age-Friendly Urban Public Transport: A Narrative Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 7465. [Google Scholar] [CrossRef]
- Lee, G.; Choi, B.; Ahn, C.; Lee, S. Wearable Biosensor and Hotspot Analysis–Based Framework to Detect Stress Hotspots for Advancing Elderly’s Mobility. J. Manag. Eng. 2020, 36, 4020010. [Google Scholar] [CrossRef]
- Elahi, H.; Castiglione, A.; Wang, G.; Geman, O. A human-centered artificial intelligence approach for privacy protection of elderly App users in smart cities. Neurocomputing 2021, 444, 189–202. [Google Scholar] [CrossRef]
- Medrano-Gil, A.M.; de los Ríos Pérez, S.; Fico, G.; Montalvá Colomer, J.B.; Cea Sáncez, G.; Gabrera-Umpierrez, M.F.; Arredondo Waldmeyer, M.T. Definition of Technological Solutions Based on the Internet of Things and Smart Cities Paradigms for Active and Healthy Ageing through Cocreation. Wirel. Commun. Mob. Comput. 2018, 2018, e1949835. [Google Scholar] [CrossRef] [Green Version]
- Casino, F.; Patsakis, C.; Batista, E.; Borràs, F.; Martínez-Ballesté, A. Healthy Routes in the Smart City: A Context-Aware Mobile Recommender. IEEE Softw. 2017, 34, 42–47. [Google Scholar] [CrossRef]
- Bastos, D.; Ribeiro, J.; Silva, F.; Rodrigues, M.; Santos, R.; Martins, C.; Rocha, N.; Pereira, A. SmartWalk Mobile—A Context-Aware m-Health App for Promoting Physical Activity Among the Elderly. In Proceedings of the World Conference on Information Systems and Technologies, La Toja Island, Spain, 16–19 April 2019; pp. 829–838. [Google Scholar]
- Stessman, J. Physical Activity, Function, and Longevity Among the Very Old. Arch. Intern. Med. 2009, 169, 1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, J.M.; Rottenberg, Y.; Cohen, A.; Stessman, J. Physical activity and health service utilization among older people. J. Am. Med. Dir. Assoc. 2013, 14, 125–129. [Google Scholar] [CrossRef]
- Babaei, P.; Azali Alamdari, K.; Soltani Tehrani, B.; Damirchi, A. Effect of six weeks of endurance exercise and following detraining on serum brain derived neurotrophic factor and memory performance in middle aged males with metabolic syndrome. J. Sports Med. Phys. Fit. 2013, 53, 437–443. [Google Scholar]
- Bastos, D.; Ribeiro, J.; Silva, F.; Rodrigues, M.; Silva, A.G.; Queirós, A.; Fernández-Caballero, A.; Rocha Pancheco, N.; Pereira, A. SmartWalk BAN: Using Body Area Networks to Encourage Older Adults to Perform. Phys. Activity. Electron. 2021, 10, 56. [Google Scholar]
- Rocha, N.P.; Bastardo, R.; Pavão, J.; Santinha, G.; Rodrigues, M.; Rodrigues, C.; Queirós, A.; Dias, A. Smart Cities’ Applications to Facilitate the Mobility of Older Adults: A Systematic Review of the Literature. Appl. Sci. 2021, 11, 6395. [Google Scholar] [CrossRef]
- Majumder, S.; Deen, M.J. Smartphone Sensors for Health Monitoring and Diagnosis. Sensors 2019, 19, 2164. [Google Scholar] [CrossRef] [Green Version]
- Medicine Alert. Available online: https://play.google.com/store/apps/details?id=com.kvsoftware.medicinealert&hl=en&gl=US. (accessed on 1 September 2021).
- Blood Pressure Companion. Available online: https://play.google.com/store/apps/details?id=de.medando.bloodpressurecompanion&hl=en&gl=US (accessed on 1 September 2021).
- Healthy.io. Available online: https://healthy.io. (accessed on 1 September 2021).
- Radley-Gardner, O.; Beale, H.; Zimmermann, R. Fundamental Texts on European Private Law; Hart Publishing: London, UK, 2016. [Google Scholar]
- Pal, D.; Papasratorn, B.; Chutimaskul, W.; Funilkul, S. Embracing the Smart-Home Revolution in Asia by the Elderly: An End-User Negative Perception Modeling. IEEE Access 2019, 7, 38535–38549. [Google Scholar] [CrossRef]
- Flynn, T.; Grispos, G.; Glisson, W.; Mahoney, W. Knock! Knock! Who Is There? Investigating Data Leakage from a Medical Internet of Things Hijacking Attack. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10 January 2020; pp. 6456–6465. [Google Scholar]
- Ramos, L.F. Digital Contact Tracing and Data Protection: Assessing the French and Portuguese Applications. Digital contact tracing and data protection: Assessing the French and Portuguese applications. UNIO–EU Law J. 2020, 6, 35–48. [Google Scholar] [CrossRef]
- Tedeschi, P.; Bakiras, S.; Di Pietro, R. IoTrace: A Flexible, Efficient, and Privacy-Preserving IoT-enabled Architecture for Contact Tracing. IEEE Commun. Mag. 2021, 59, 82–88. [Google Scholar] [CrossRef]
- McCoy, M.S.; Libert, T.; Buckler, D.; Grande, D.T.; Friedman, A.B. Prevalence of Third-Party Tracking on COVID-19–Related Web Pages. JAMA 2020, 324, 1462–1464. [Google Scholar] [CrossRef]
- Lastdrager, E.E. Achieving a consensual definition of phishing based on a systematic review of the literature. Crime Sci. 2014, 3, 9. [Google Scholar] [CrossRef]
- Collier, R. NHS ransomware attack spreads worldwide. Can. Med Assoc. J. 2017, 189, E786–E787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberoi, P.; Mittal, S. Survey of Various Security Attacks in Clouds Based Environments. Int. J. Adv. Res. Comput. Sci. 2017, 8, 405–410. [Google Scholar] [CrossRef]
- Zaw, T.M.; Thant, M.; Bezzateev, S.V. Database Security with AES Encryption, Elliptic Curve Encryption and Signature. In Proceedings of the 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), St. Petersburg, Russia, 3–7 June 2019; pp. 1–6. [Google Scholar]
- Tankard, C. Encryption as the cornerstone of big data security. Netw. Secur. 2017, 2017, 5–7. [Google Scholar] [CrossRef]
- Tariq, N.; Asim, M.; Al-Obeidat, F.; Zubair Farooqi, M.; Baker, T.; Hammoudeh, M.; Ghafir, I. The Security of Big Data in Fog-Enabled IoT Applications Including Blockchain: A Survey. Sensors 2019, 19, 1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabt, M.; Achemlal, M.; Bouabdallah, A. Trusted Execution Environment: What It is, and What It is Not. In Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015; pp. 57–64. [Google Scholar]
- Van den Braak, S.W.; Choenni, S.; Meijer, R.; Zuiderwijk, A. Trusted third parties for secure and privacy-preserving data integration and sharing in the public sector. In Proceedings of the 13th Annual International Conference on Digital Government Research 2012, College Park, MA, USA, 4–7 June 2012; pp. 135–144. [Google Scholar]
- Mushtag, M.F.; Akram, U.; Khan, I.; Khan, S.N.; Shahzad, A.; Ullah, A. Cloud Computing Environment and Security Challenges: A Review. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 183–195. [Google Scholar]
- Yang, L.; Han, Z.; Huang, Z.; Ma, J. A remotely keyed file encryption scheme under mobile cloud computing. J. Netw. Comput. Appl. 2018, 106, 90–99. [Google Scholar] [CrossRef]
- Sandhia, G.K.; Kasmir Raja, S.V.; Jansi, K.R. Multi-Authority-Based File Hierarchy Hidden CP-ABE Scheme for Cloud Security. Serv. Oriented Comput. Appl. 2018, 12, 295–303. [Google Scholar] [CrossRef]
- Salman, T.; Zolanvari, M.; Erbad, A.; Jain, R.; Samaka, M. Security services using blockchains: A state of the art survey. IEEE Commun. Surv. Tutor. 2018, 21, 858–880. [Google Scholar] [CrossRef] [Green Version]
- Alfandi, O.; Khanji, S.; Ahmad, L.; Khattak, A. A survey on boosting IoT security and privacy through blockchain. Clust. Comput. 2021, 24, 37–55. [Google Scholar] [CrossRef]
- Hussien, H.M.; Yasin, S.M.; Udzir, S.N.; Zaidan, A.A.; Zaidan, B.B. A systematic review for enabling of develop a blockchain technology in healthcare application: Taxonomy, substantially analysis, motivations, challenges, recommendations and future direction. J. Med. Syst. 2019, 43, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Chen, X.; Kou, G. A systematic review of blockchain. Financ. Innov. 2019, 5, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Tourani, R.; Misra, S.; Mick, T.; Panwar, G. Security, privacy, and access control in information-centric networking: A survey. IEEE Commun. Surv. Tutor. 2017, 20, 566–600. [Google Scholar] [CrossRef]
- Hu, V.C.; Kuhn, D.R.; Ferraiolo, D.F.; Voas, J. Attribute-based access control. Computer 2015, 48, 85–88. [Google Scholar] [CrossRef]
- Sergeev, A.; Matulevičius, R. An Approach to Capture Role-Based Access Control Models from Spring Web Applications. In Proceedings of the IEEE 21st International Enterprise Distributed Object Computing Conference (EDOC), Quebec City, QC, Canada, 10–13 October 2017; pp. 159–164. [Google Scholar]
- OASIS eXtensable Access Control Markup Language. Available online: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html (accessed on 1 September 2021).
- Jiang, F.; Fu, Y.; Gupta, B.B.; Liang, Y.; Rho, S.; Lou, F.; Meng, F.; Tian, Z. Deep Learning Based Multi-Channel Intelligent Attack Detection for Data Security. IEEE Trans. Sustain. Comput. 2020, 5, 204–212. [Google Scholar] [CrossRef]
- Rodrigues, M.; Santos, R.; Queirós, A.; Silva, A.G.; Amaral, J.; Goncalves, L.J.; Pereira, A.; da Rocha, N.P. Meet SmartWalk, Smart Cities for Active Seniors. In Proceedings of the TISHW 2018—The 2nd International Conference on Technology and Innovation in Sports, Health and Wellbeing, Thessaloniki, Greece, 20–22 June 2018; pp. 1–7. [Google Scholar]
- Queirós, A.; Silva, A.; Simões, P.; Santos, C.; Matrins, C.; da Rocha, N.P.; Rogrigues, M. SmartWalk: Personas and scenarios definition and functional requirements. In Proceedings of the TISHW 2018—The 2nd International Conference on Technology and Innovation in Sports, Health and Wellbeing Thessaloniki, Thessaloniki, Greece, 20–22 June 2018; pp. 1–7. [Google Scholar]
- What Is the Awareness API? Available online: https://developers.google.com/awareness/overview#context-types (accessed on 1 September 2021).
- Leitão, R.; Silva, P.A. Target and Spacing Sizes for Smartphone User Interfaces for Older Adults: Design Patterns Based on an Evaluation with Users. In Proceedings of the 19th Conference on Pattern Languages of Programs, Tucson, AZ, USA, 19–21 October 2012; pp. 1–16. [Google Scholar]
- Kobayashi, M.; Hiyama, A.; Miura, T.; Asakawa, C.; Hirose, M.; Ifukube, T. Elderly User Evaluation of Mobile Touchscreen Interactions. In Proceedings of the Human-Computer Interaction—INTERACT 2011, Lisbon, Portugal, 5–9 September 2011; Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Wincler, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 83–99. [Google Scholar]
- Barros, A.C.; Leitão, R.; Ribeiro, J. Design and Evaluation of a Mobile User Interface for Older Adults: Navigation, Interaction and Visual Design Recommendations. Procedia Comput. Sci. 2014, 27, 369–378. [Google Scholar] [CrossRef]
- Scherer, K.R.; Oshinsky, J.S. Cue utilization in emotion attribution from auditory stimuli. Motiv. Emot. 1997, 1, 331–346. [Google Scholar] [CrossRef] [Green Version]
- FHIR Release 3 (STU). Available online: https://www.hl7.org/fhir/resourcelist.html (accessed on 1 September 2021).
- Kennedy, E.; Millard, C. Data security and multi-factor authentication: Analysis of requirements under EU law and in selected EU Member States. Comput. Law Secur. Rev. 2016, 32, 91–110. [Google Scholar] [CrossRef]
- Jones, M.; Bradley, J.; Sakimura, N. RFC 7519, Json Web Token (JWT); IEFT: Fremont, CA, USA, 2015. [Google Scholar]
- Rosa, M.; Barraca, J.P.; da Rocha, N.P. Access Control for Social Care Platforms Using Fast Healthcare Interoperability Resources. In Proceedings of the World Conference on Information Systems and Technologies, La Toja Island, Spain, 16–19 April 2019; pp. 94–104. [Google Scholar]
- Rosa, M.; Barraca, J.P.; da Rocha, N.P. Logging Integrity with Blockchain Structures. In Proceedings of the World Conference on Information Systems and Technologies, La Toja Island, Spain, 16–19 April 2019; pp. 83–93. [Google Scholar]
- Cerdeira, D.; Santos, N.; Fonseca, P.; Pinto, S. SoK: Understanding the Prevailing Security Vulnerabilities in Trust Zone-assisted TEE Systems. In Proceedings of the 2020 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 18–20 May 2020; pp. 1416–1432. [Google Scholar]
- Xie, Q.; Li, K.; Tan, X.; Han, L.; Tang, W.; Hu, B. A secure and privacy-preserving authentication protocol for wireless sensor networks in smart city. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 1–7. [Google Scholar] [CrossRef]
- Sylla, T.; Chalouf, M.A.; Krief, F.; Samaké, K. SETUCOM: Secure and Trustworthy Context Management for Context-Aware Security and Privacy in the Internet of Things. Secur. Commun. Netw. 2021, 2021, 6632747. [Google Scholar] [CrossRef]
- Khudhur, D.D.; Croock, M.S. Developed security and privacy algorithms for cyber physical system. Int. J. Electr. Comput. Eng. 2021, 11, 5379–5389. [Google Scholar]
Metrics | Minimum (ms) | Maximum (ms) | Average (ms) |
---|---|---|---|
Connection | 14 | 3683 | 650 |
Latency | 13,849 | 61,590 | 48,872 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastos, D.; Ribeiro, J.; Silva, F.; Rodrigues, M.; Rabadão, C.; Fernández-Caballero, A.; Barraca, J.P.; Rocha, N.P.; Pereira, A. Security Mechanisms of a Mobile Health Application for Promoting Physical Activity among Older Adults. Sensors 2021, 21, 7323. https://doi.org/10.3390/s21217323
Bastos D, Ribeiro J, Silva F, Rodrigues M, Rabadão C, Fernández-Caballero A, Barraca JP, Rocha NP, Pereira A. Security Mechanisms of a Mobile Health Application for Promoting Physical Activity among Older Adults. Sensors. 2021; 21(21):7323. https://doi.org/10.3390/s21217323
Chicago/Turabian StyleBastos, David, José Ribeiro, Fernando Silva, Mário Rodrigues, Carlos Rabadão, Antonio Fernández-Caballero, João Paulo Barraca, Nelson Pacheco Rocha, and António Pereira. 2021. "Security Mechanisms of a Mobile Health Application for Promoting Physical Activity among Older Adults" Sensors 21, no. 21: 7323. https://doi.org/10.3390/s21217323
APA StyleBastos, D., Ribeiro, J., Silva, F., Rodrigues, M., Rabadão, C., Fernández-Caballero, A., Barraca, J. P., Rocha, N. P., & Pereira, A. (2021). Security Mechanisms of a Mobile Health Application for Promoting Physical Activity among Older Adults. Sensors, 21(21), 7323. https://doi.org/10.3390/s21217323