In-Vehicle Alcohol Detection Using Low-Cost Sensors and Genetic Algorithms to Aid in the Drinking and Driving Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Standardization
2.3. Feature Extraction
2.4. Feature Selection
3. Results
4. Discussion
5. Conclusions
6. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shults, R. Child Passenger Deaths Involving Drinking Drivers-United States, 1997–2002. MMWR Morb. Mortal. Wkly. Rep. 2004, 53, 77. [Google Scholar]
- Bates, L.J.; Davey, J.; Watson, B.; King, M.J.; Armstrong, K. Factors contributing to crashes among young drivers. Sultan Qaboos Univ. Med. J. 2014, 14, e297. [Google Scholar]
- Chen, H.; Chen, L. Support vector machine classification of drunk driving behaviour. Int. J. Environ. Res. Public Health 2017, 14, 108. [Google Scholar] [CrossRef] [PubMed]
- Watling, C.; Armstrong, K.; Smith, S. Sleepiness: How a biological drive can influence other risky road user behaviours. In Proceedings of the 2013 Australasian College of Road Safety (ACRS) National Conference, Sydney, Australia, 6–8 November 2013; Australasian College of Road Safety (ACRS): Adelaide, SA, Australia, 2013; pp. 1–12. [Google Scholar]
- Williamson, A.; NSW Injury Risk Management Research Centre. Why Are Young Drivers over Represented in Crashes: Summary of the Issues—Update of Literature Review: Literature 2000 to 2003/Ann Williamson; University of New South Wales Sydney: Sydney, Australia, 2003. [Google Scholar]
- Gauld, C.S.; Lewis, I.; White, K.M. Concealing their communication: Exploring psychosocial predictors of young drivers’ intentions and engagement in concealed texting. Accid. Anal. Prev. 2014, 62, 285–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCartt, A.T.; Hellinga, L.A.; Bratiman, K.A. Cell phones and driving: Review of research. Traffic Inj. Prev. 2006, 7, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Begg, D.J.; Langley, J.D.; Stephenson, S. Identifying factors that predict persistent driving after drinking, unsafe driving after drinking, and driving after using cannabis among young adults. Accid. Anal. Prev. 2003, 35, 669–675. [Google Scholar] [CrossRef]
- Evans-Whipp, T.J.; Plenty, S.M.; Toumbourou, J.W.; Olsson, C.; Rowland, B.; Hemphill, S.A. Adolescent exposure to drink driving as a predictor of young adults’ drink driving. Accid. Anal. Prev. 2013, 51, 185–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habibi Nokhandan, M.; Bazrafshan, J.; Ghorbani, K. A quantitative analysis of risk based on climatic factors on the roads in Iran. Meteorol. Appl. A J. Forecast. Pract. Appl. Train. Tech. Model. 2008, 15, 347–357. [Google Scholar] [CrossRef]
- Chen, H.Y.; Ivers, R.Q.; Martiniuk, A.; Boufous, S.; Senserrick, T.; Woodward, M.; Stevenson, M.; Williamson, A.; Norton, R. Risk and type of crash among young drivers by rurality of residence: Findings from the DRIVE Study. Accid. Anal. Prev. 2009, 41, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.F. Teenage drivers: Patterns of risk. J. Saf. Res. 2003, 34, 5–15. [Google Scholar] [CrossRef]
- Tselentis, D.I.; Vlahogianni, E.I.; Yannis, G. Driving safety efficiency benchmarking using smartphone data. Transp. Res. Part C Emerg. Technol. 2019, 109, 343–357. [Google Scholar] [CrossRef]
- Wakana, H.; Yamada, M.; Sakairi, M. Portable Alcohol Detection System with Breath-Recognition Function. In Proceedings of the 2018 IEEE SENSORS, Lake Como, Italy, 27–29 March 2018; pp. 1–4. [Google Scholar]
- Sandeep, K.; Ravikumar, P.; Ranjith, S. Novel drunken driving detection and prevention models using Internet of things. In Proceedings of the 2017 IEEE International Conference on Recent Trends in Electrical, Electronics and Computing Technologies (ICRTEECT), Warangal, India, 30–31 July 2017; pp. 145–149. [Google Scholar]
- Murata, K.; Fujita, E.; Kojima, S.; Maeda, S.; Ogura, Y.; Kamei, T.; Tsuji, T.; Kaneko, S.; Yoshizumi, M.; Suzuki, N. Noninvasive biological sensor system for detection of drunk driving. IEEE Trans. Inf. Technol. Biomed. 2010, 15, 19–25. [Google Scholar] [CrossRef]
- Harkous, H.; Artail, H. A Two-Stage Machine Learning Method for Highly-Accurate Drunk Driving Detection. In Proceedings of the 2019 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 21–23 October 2019; pp. 1–6. [Google Scholar]
- Hyder, G.; Chowdhry, B.S.; Memon, K.; Ahmed, A. The Smart Automobile (SAM): An Application Based on Drowsiness Detection, Alcohol Detection, Vital Sign Monitoring and Lane based Auto Drive to avoid Accidents. In Proceedings of the 2020 IEEE Global Conference on Wireless and Optical Technologies (GCWOT), Malaga, Spain, 6–8 October 2020; pp. 1–10. [Google Scholar]
- Vijayan, V.; Sherly, E. Real time detection system of driver drowsiness based on representation learning using deep neural networks. J. Intell. Fuzzy Syst. 2019, 36, 1977–1985. [Google Scholar] [CrossRef]
- Dai, J.; Teng, J.; Bai, X.; Shen, Z.; Xuan, D. Mobile phone based drunk driving detection. In Proceedings of the 2010 4th IEEE International Conference on Pervasive Computing Technologies for Healthcare, Trento, Italy, 20–23 May 2010; pp. 1–8. [Google Scholar]
- You, C.W.; Shih, L.H.; Lin, H.Y.; Chuang, Y.; Chen, Y.C.; Chen, Y.L.; Huang, M.C. Enabling personal alcohol tracking using transdermal sensing wristbands: Benefits and challenges. In Proceedings of the 21st International Conference on Human-Computer Interaction with Mobile Devices and Services, Taipei, Taiwan, 1–4 October 2019; pp. 1–6. [Google Scholar]
- Jamil, T.; Mohammed, I.; Awadalla, M.H. Design and implementation of an eye blinking detector system for automobile accident prevention. In Proceedings of the SoutheastCon 2016 IEEE, Norfolk, Virginia, 30 March–3 April 2016; pp. 1–3. [Google Scholar]
- Kulkarni, S.; Harale, A.; Thakur, A. Image processing for driver’s safety and vehicle control using raspberry Pi and webcam. In Proceedings of the 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September 2017; pp. 1288–1291. [Google Scholar]
- Celaya-Padilla, J.M.; Galván-Tejada, C.E.; Lozano-Aguilar, J.S.A.; Zanella-Calzada, L.A.; Luna-García, H.; Galván-Tejada, J.I.; Gamboa-Rosales, N.K.; Velez Rodriguez, A.; Gamboa-Rosales, H. “Texting & Driving” Detection Using Deep Convolutional Neural Networks. Appl. Sci. 2019, 9, 2962. [Google Scholar]
- Luna-García, H.; Celaya-Padilla, J.M.; Gamboa-Rosales, H.; Galván-Tejada, J.I.; Galván-Tejada, C.E.; Arceo-Olague, J.G.; Solís-Robles, R. Alcohol Detection in a Car’s Cab Using MQ3 and First Approaches to Sensing: Laboratory Tests. In Proceedings of the Human-Computer Interaction: 5th Iberoamerican Workshop, HCI-Collab 2019, Puebla, Mexico, 19–21 June 2019; Revised Selected Papers. Springer Nature: Berlin/Heidelberg, Germany, 2019; Volume 1114, p. 73. [Google Scholar]
- Celaya-Padilla, J.; Martinez-Torteya, A.; Rodriguez-Rojas, J.; Galvan-Tejada, J.; Treviño, V.; Tamez-Peña, J. Bilateral Image Subtraction and Multivariate Models for the Automated Triaging of Screening Mammograms. BioMed Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celaya-Padilla, J.M.; Rodriguez-Rojas, J.; Galván-Tejada, J.I.; Martínez-Torteya, A.; Trevino, V.; Tamez-Peña, J.G. Bilateral Image Subtraction Features for Multivariate Automated Classification of Breast Cancer Risk. In Medical Imaging 2014: Computer-Aided Diagnosis; International Society for Optics and Photonics: Bellingham, WA, USA, 2014. [Google Scholar]
- Celaya-Padilla, J.M.; Galván-Tejada, C.E.; López-Monteagudo, F.E.; Alonso-González, O.; Moreno-Báez, A.; Martínez-Torteya, A.; Galván-Tejada, J.I.; Arceo-Olague, J.G.; Luna-García, H.; Gamboa-Rosales, H. Speed bump detection using accelerometric features: A genetic algorithm approach. Sensors 2018, 18, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Back, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Trevino, V.; Falciani, F. GALGO: An R package for multivariate variable selection using genetic algorithms. Bioinformatics 2006, 22, 1154–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes, C.; Vapnik, V. Support vector machine. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Celaya-Padilla, J.M.; Guzmán-Valdivia, C.H.; Galván-Tejada, C.E.; Galván-Tejada, J.I.; Gamboa-Rosales, H.; Garza-Veloz, I.; Martinez-Fierro, M.L.; Cid-Báez, M.A.; Martinez-Torteya, A.; Martinez-Ruiz, F.J.; et al. Contralateral asymmetry for breast cancer detection: A CADx approach. Biocybern. Biomed. Eng. 2018, 38, 115–125. [Google Scholar] [CrossRef]
- Fonti, V.; Belitser, E. Feature selection using lasso. VU Amst. Res. Pap. Bus. Anal. 2017, 30, 1–25. [Google Scholar]
Feature | Formula |
---|---|
Mean (M1) | |
Variance (M2) | |
Skewness (M3) | |
kurtosis (M4) | |
Standard Deviation | |
Max | |
Min | |
Dynamic range |
Feature | Sensor Channel |
---|---|
Mean | 5 |
Min | 4 |
Std. Deviation | 0 |
Max | 4 |
Train | Test | |||||||
---|---|---|---|---|---|---|---|---|
i | AUC | Accuracy | Sensitivity | Specificity | AUC | Accuracy | Sensitivity | Specificity |
1 | 0.9555 | 0.9555 | 0.9111 | 1 | 0.9565 | 0.9565 | 0.913 | 1 |
2 | 0.9663 | 0.9663 | 0.9326 | 1 | 0.9784 | 0.9784 | 0.9569 | 1 |
3 | 0.9751 | 0.9751 | 0.9501 | 1 | 0.9826 | 0.9826 | 0.9652 | 1 |
4 | 0.9957 | 0.9957 | 0.9913 | 1 | 0.9913 | 0.9913 | 0.9826 | 1 |
5 | 0.9772 | 0.9772 | 0.9544 | 1 | 0.9739 | 0.9739 | 0.9478 | 1 |
Average= | 0.97396 | 0.97396 | 0.9479 | 1 | 0.97654 | 0.97654 | 0.9531 | 1 |
Feature | Sensor Channel |
---|---|
Skewness | 0, 1 |
Kurtosis | 0, 1 |
Mean | 3, 1 |
Min | 0, 1, 3 |
Dinamic range | 4 |
Max | 0, 2, 4, 5 |
Train | Test | ||||||
---|---|---|---|---|---|---|---|
Strategy | # of Features | AUC | Sensitivity | Specificity | AUC | Sensitivity | Specificity |
GALGO + SVM (Radial) | 4 | 0.98 | 0.9601 | 1 | 0.9896 | 0.9792 | 1 |
GALGO + SVM (Linear) | 4 | 0.9759 | 0.9565 | 1 | 0.9826 | 0.9652 | 1 |
LASSO + SVM (Radial) | 14 | 0.7214 | 0.559 | 0.8837 | 0.6944 | 0.4861 | 0.9028 |
LASSO + SVM (Linear) | 14 | 0.9948 | 0.9896 | 1 | 0.9965 | 0.9931 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celaya-Padilla, J.M.; Romero-González, J.S.; Galvan-Tejada, C.E.; Galvan-Tejada, J.I.; Luna-García, H.; Arceo-Olague, J.G.; Gamboa-Rosales, N.K.; Sifuentes-Gallardo, C.; Martinez-Torteya, A.; De la Rosa, J.I.; et al. In-Vehicle Alcohol Detection Using Low-Cost Sensors and Genetic Algorithms to Aid in the Drinking and Driving Detection. Sensors 2021, 21, 7752. https://doi.org/10.3390/s21227752
Celaya-Padilla JM, Romero-González JS, Galvan-Tejada CE, Galvan-Tejada JI, Luna-García H, Arceo-Olague JG, Gamboa-Rosales NK, Sifuentes-Gallardo C, Martinez-Torteya A, De la Rosa JI, et al. In-Vehicle Alcohol Detection Using Low-Cost Sensors and Genetic Algorithms to Aid in the Drinking and Driving Detection. Sensors. 2021; 21(22):7752. https://doi.org/10.3390/s21227752
Chicago/Turabian StyleCelaya-Padilla, Jose M., Jonathan S. Romero-González, Carlos E. Galvan-Tejada, Jorge I. Galvan-Tejada, Huizilopoztli Luna-García, Jose G. Arceo-Olague, Nadia K. Gamboa-Rosales, Claudia Sifuentes-Gallardo, Antonio Martinez-Torteya, José I. De la Rosa, and et al. 2021. "In-Vehicle Alcohol Detection Using Low-Cost Sensors and Genetic Algorithms to Aid in the Drinking and Driving Detection" Sensors 21, no. 22: 7752. https://doi.org/10.3390/s21227752
APA StyleCelaya-Padilla, J. M., Romero-González, J. S., Galvan-Tejada, C. E., Galvan-Tejada, J. I., Luna-García, H., Arceo-Olague, J. G., Gamboa-Rosales, N. K., Sifuentes-Gallardo, C., Martinez-Torteya, A., De la Rosa, J. I., & Gamboa-Rosales, H. (2021). In-Vehicle Alcohol Detection Using Low-Cost Sensors and Genetic Algorithms to Aid in the Drinking and Driving Detection. Sensors, 21(22), 7752. https://doi.org/10.3390/s21227752