Design and Performance Verification of a Space Radiation Detection Sensor Based on Graphene
Abstract
:1. Introduction
2. Analysis of Detection Method of Graphene Field Effect Transistor
3. Simulation Analysis
4. Test Device Preparation
5. Test Results and Analysis
5.1. Experiments and Data
5.2. Results Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano 2011, 5, 6916–6924. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Lozada-Hidalgo, M.; Wang, F.C.; Mishchenko, A.; Schedin, F.; Nair, R.; Hill, W.; Boukhvalov, D.W.; Katsnelson, M.I.; Dryfe, R.A.W.; et al. Proton transport through one-atom-thick crystals. Nature 2014, 516, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Nikam, R.D.; Kwak, M.; Lee, J.; Rajput, K.G.; Hwang, H. Controlled Ionic Tunneling in Lithium Nanoionic Synaptic Transistor through Atomically Thin Graphene Layer for Neuromorphic Computing. Adv. Electron. Mater. 2020, 6, 1901100. [Google Scholar] [CrossRef]
- Patil, A.; Lopez, G.; Foxe, M.; Childres, I.; Roecker, C.; Boguski, J.; Jovanovic, I.; Chen, Y.P. Graphene Field Effect Transistors for Detection of Ionizing Radiation. In Proceedings of the IEEE Nuclear Science Symposuim & Medical Imaging Conference, Knoxville, TN, USA, 30 October–6 November 2010; Volume 12, pp. 384–391. [Google Scholar]
- Cress, C.D.; Champlain, J.G.; Esqueda, I.S.; Robinson, J.T.; Friedman, A.L.; McMorrow, J.J. Total Ionizing Dose Induced Charge Carrier Scattering in Graphene Devices. IEEE Trans. Nucl. Sci. 2012, 59, 289–294. [Google Scholar] [CrossRef]
- Esqueda, I.S.; Cress, C.D.; Anderson, T.J.; Ahlbin, J.R.; Bajura, M.; Fritze, M.; Moon, J.S. Modeling Radiation-Induced Degradation in Top-Gated Epitaxial Graphene FieldEffect-Transistors (FETs). Electronics 2013, 2, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbonfilms. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGregor, D.S.; Hammig, M.D.; Yang, Y.H.; Gersch, H.K.; Klann, R.T. Design considerations for thin film coated semiconductor thermal neutron detectorsi: Basics regarding alpha particle emitting neutron reactive films. Nucl. Instrum. Methods A 2003, 500, 272–308. [Google Scholar] [CrossRef]
- An, H.; Li, D.; Wen, X.; Wang, Y.; Li, C.; Wang, G.; Zhang, C.; Qin, X.; Xue, Y.; Cao, Z. Design and Simulation of Response for Graphene Proton Detector. Vac. Cryog. 2020, 26, 141–145. (In Chinese) [Google Scholar]
- Lutz, G.; Andricek, L.; Eckardt, R.; Hälker, O.; Hermann, S.; Lechner, P.; Lechner, P.; Richter, R.; Schaller, G.; Schopper, F.; et al. Depfet—Detectors: New developments. Nucl. Instrum. Methods A 2007, 572, 311–315. [Google Scholar] [CrossRef]
- Cress, C.D.; McMorrow, J.J.; Robinson, J.T.; Landi, B.J.; Hubbard, S.M.; Messenger, S.R. Radiation Effects in Carbon Nanoelectronics. Electronics 2012, 1, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, S.; Chen, X. Recent Progress of Two-dimensional Material Photodetectors Based on Photoelectronic Conversion. J. Beijing Univ. Technol. 2020, 46, 1149–1166. [Google Scholar]
- Qiao, S.; Li, D.; Yang, S.; Gong, C.; Huang, Y. Effect of 60Co γ-Ray Irradiation on Defect Formation of Single Layered Graphene. Chin. J. Vac. Sci. Technol. 2019, 39, 490–494. [Google Scholar]
Mat | Density/g/cm3 | Band Gap/eV | Electron Mobility/cm2/V·s | Hole Mobility/cm2/V·s | Ratio of Mobility |
---|---|---|---|---|---|
Si | 2.33 | 1.12 | 1900 | 500 | 3.8 |
6H-SiC | 3.21 | 2.86 | 400 | 75 | 5.3 |
Ge | 5.33 | 0.67 | 3800 | 1820 | 2.1 |
HgI2 | 6.4 | 2.13 | 100 | 4 | 25 |
CdZnTe | 6.0 | 1.64 | 1350 | 120 | 11.3 |
Irradiation Type | Electron Irradiation |
---|---|
Irradiated Energy (keV) | 40 |
Irradiation injection (e/cm2). | 1 × 104, 5 × 104, 1 × 105, 2 × 105, 3 × 105 |
Irradiation Type | Proton Irradiation |
---|---|
Irradiated Energy (keV) | 40 |
Irradiation injection (p/cm2). | 1 × 104, 5 × 104, 1 × 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, H.; Li, D.; Yang, S.; Wen, X.; Zhang, C.; Cao, Z.; Wang, J. Design and Performance Verification of a Space Radiation Detection Sensor Based on Graphene. Sensors 2021, 21, 7753. https://doi.org/10.3390/s21227753
An H, Li D, Yang S, Wen X, Zhang C, Cao Z, Wang J. Design and Performance Verification of a Space Radiation Detection Sensor Based on Graphene. Sensors. 2021; 21(22):7753. https://doi.org/10.3390/s21227753
Chicago/Turabian StyleAn, Heng, Detian Li, Shengsheng Yang, Xuan Wen, Chenguang Zhang, Zhou Cao, and Jun Wang. 2021. "Design and Performance Verification of a Space Radiation Detection Sensor Based on Graphene" Sensors 21, no. 22: 7753. https://doi.org/10.3390/s21227753
APA StyleAn, H., Li, D., Yang, S., Wen, X., Zhang, C., Cao, Z., & Wang, J. (2021). Design and Performance Verification of a Space Radiation Detection Sensor Based on Graphene. Sensors, 21(22), 7753. https://doi.org/10.3390/s21227753