Recognition of Noisy Radar Emitter Signals Using a One-Dimensional Deep Residual Shrinkage Network
Abstract
:1. Introduction
- (1)
- Important features could be directly extracted from a time-sequential sequence using a 1D DRSN without dimension conversion. Compared with traditional deep learning methods, the recognition accuracy was improved.
- (2)
- The rectified linear unit (ReLU) was replaced by a soft thresholding function to eliminate unimportant features. Moreover, the attention mechanism was used to adaptively set the threshold to achieve recognition of noisy radar emitter signals. The mechanism of elimination of redundant features using the soft thresholding function was analyzed.
- (3)
- Radar emitter signals containing different types of noise were recognized using the proposed method, showing excellent results.
2. Signal Noise
2.1. Gaussian Noise
2.2. Laplacian Noise
2.3. Poisson Noise
2.4. Cauchy Noise
3. One-Dimensional Deep Residual Shrinkage Network (1D DRSN)
3.1. 1D Convolution
3.2. 1D DRSN
3.3. Network Construction
4. Results
4.1. Datasets
4.2. Recognition Results of Radar Signals with the Four Types of Noise
4.3. Analysis of Learned Features
4.4. Comparison with Other Models
4.5. Comparison with Different Sampling Frequencies
5. Comparison between the Soft Thresholding Function and ReLU Function
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
SNR | −8 dB | −6 dB | −4 dB | −2 dB | 0 dB | 2 dB | 4 dB | |
---|---|---|---|---|---|---|---|---|
Signal | ||||||||
baker | 0.97 | 0.98 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | |
baker_lfm | 0.87 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
frequency -coding | 0.77 | 0.97 | 0.98 | 0.98 | 1.00 | 0.99 | 1.00 | |
frequency diversity | 1.00 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | |
lfm | 0.55 | 0.71 | 0.81 | 0.94 | 0.97 | 1.00 | 0.99 | |
nlfm | 0.59 | 0.59 | 0.74 | 0.86 | 0.88 | 0.94 | 0.94 | |
cw | 0.53 | 0.85 | 0.95 | 1.00 | 1.00 | 0.99 | 1.00 |
SNR | −8 dB | −6 dB | −4 dB | −2 dB | 0 dB | 2 dB | 4 dB | |
---|---|---|---|---|---|---|---|---|
Signal | ||||||||
baker | 0.93 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
baker_lfm | 0.88 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | |
frequency-coding | 0.89 | 0.94 | 0.97 | 1.00 | 1.00 | 0.99 | 1.00 | |
frequency diversity | 0.98 | 0.97 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | |
lfm | 0.86 | 0.85 | 0.97 | 0.93 | 0.99 | 1.00 | 0.99 | |
nlfm | 0.68 | 0.75 | 0.89 | 0.93 | 0.98 | 0.99 | 0.98 | |
cw | 0.80 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
SNR | −8 dB | −6 dB | −4 dB | −2 dB | 0 dB | 2 dB | 4 dB | |
---|---|---|---|---|---|---|---|---|
Signal | ||||||||
baker | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
baker_lfm | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
frequency coding | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
frequency diversity | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
lfm | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
nlfm | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 1.00 | 1.00 | |
cw | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
SNR | −8 dB | −6 dB | −4 dB | −2 dB | 0 dB | 2 dB | 4 dB | |
---|---|---|---|---|---|---|---|---|
Signal | ||||||||
baker | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
baker_lfm | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
frequency coding | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | |
frequency diversity | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
lfm | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
nlfm | 0.99 | 0.97 | 1.00 | 0.99 | 0.98 | 1.00 | 1.00 | |
cw | 1.00 | 1.00 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 |
References
- Richard, W.G. ELINT: The Interception and Analysis of Radar Signals; Artech House: Norwood, MA, USA, 2006; pp. 1–23. [Google Scholar]
- Xin, G. Radar emitter recognition of gray correlation based on D-S reasoning. J. Syst. Simul. 2004, 16, 22601–22603. [Google Scholar]
- Sagnard, F.; Tarel, J.-P. Template-matching based detection of hyperbolas in ground-penetrating radargrams for buried utilities. J. Geophys. Eng. 2016, 13, 491–504. [Google Scholar] [CrossRef]
- Wen, W.; Mendel, J.M. A fuzzy logic method for modulation classification in nonideal environments. IEEE Trans. Fuzzy Syst. 1999, 7, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; He, Y.; Yi, X. Attribute measure recognition approach and its applications to emitter recognition. Sci. China Ser. F 2005, 48, 225–233. [Google Scholar] [CrossRef]
- Zhang, M.; Diao, M.; Guo, L. Convolutional neural networks for automatic cognitive radio waveform recognition. IEEE Access 2017, 5, 11074–11082. [Google Scholar] [CrossRef]
- Zhao, M. The Classification and Recognition of Radar Radiation Source Signals Based on Deep Learning. Master’s Thesis, Xidian University, Xi’an, China, 2017. [Google Scholar]
- Qu, Z.; Hou, C.; Hou, C.; Wang, W. Radar signal intra-pulse modulation recognition based on convolutional neural network and deep Q-learning network. IEEE Access 2020, 8, 49125–49136. [Google Scholar] [CrossRef]
- Wu, B.; Yuan, S.; Li, P.; Jing, Z.; Huang, S.; Zhao, Y. Radar emitter signal recognition based on one-dimensional convolutional neural network with attention mechanism. Sensors 2020, 20, 6350. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G. Radar Countermeasure Principle; Xidian University Press: Xi’an, China, 1999; pp. 325–334. [Google Scholar]
- Lufei, D. Radar Principle; Xidian University Press: Xi’an, China, 1995; pp. 112–119. [Google Scholar]
- Zhang, Z. Research on Uniform Noise Cancellation Method Based on Infinite Norm Constraint. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2016. [Google Scholar]
- Xiaomei, Z.; Ying, H.; Yaping, B. Recursive least square based sparse channel estimation under non-Gaussian noise background. App. Elect. Tech. 2016, 42, 109–112. [Google Scholar] [CrossRef]
- Sinha, K.; Trivedi, Y.N. Spectrum sensing techniques based on last status change point estimation for dynamic primary user in Additive Laplacian noise. Wirel. Pers. Commun. 2021. [Google Scholar] [CrossRef]
- Wei, J.; Chen, Y.; Yu, Y.; Chen, Y. Optimal randomness in swarm-based search. Mathematics 2019, 7, 828. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhong, S.; Fu, X.; Tang, B.; Pecht, M. Deep residual Shrinkage Networks for fault diagnosis. IEEE Trans. Ind. Inform. 2020, 16, 4681–4690. [Google Scholar] [CrossRef]
- Peng, Y.H. De-noising by modified soft-thresholding. In Proceedings of the 2000 IEEE Asia-Pacific Conference on Circuits and Systems Electronic Communication Systems (Cat. No.00EX394), Tianjin, China, 4–6 December 2000; pp. 760–762. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Reddi, S.J.; Kale, S.; Kumar, S. On the convergence of Adam and beyond. arXiv 2018, arXiv:abs/1904.09237. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Project | Parameter |
---|---|
CPU | i7-10700 |
GPU | RTX 2060 |
RAM | 16G |
Simulation Software | MATLAB2020a, Python3.7, Tensorflow2.2 |
Signal Type | Carrier Frequency | Parameter |
---|---|---|
Barker | 10~30 MHz | 13-bit Barker code width of each symbol is 1/13 us |
Barker-lfm | 10~30 MHz | Frequency bandwidth: 100 MHz to 200 MHz 13-bit Barker code width of each symbol is 1/13 us |
Frequency-coding | 10~20 MHz 100~200 MHz | 13-bit random code width of each symbol is 1/13 us |
Frequency diversity | 10~20 MHz 50~60 MHz 90~100 MHz | None |
LFM | 20~30 MHz | Frequency bandwidth: 50 MHz to 200 MHz 1/2 up frequency modulation 1/2 down frequency modulation |
NLFM | 20~30 MHz | Frequency bandwidth: 50 MHz to 200 MHz Modulation: Quadratic 1/2 up frequency modulation 1/2 down frequency modulation |
CW | 10~30 MHz | None |
Number of Blocks | Output Size | DRSN | ResNet | ConvNet |
---|---|---|---|---|
1 | 1 × 512 × 1 | Input | Input | Input |
1 | 4 × 256 × 1 | Conv (4, 3, /2) | Conv (4, 3, /2) | Conv (4, 3, /2) |
1 | 4 × 128 × 1 | RSBU (4, 3, /2) | RBU (4, 3, /2) | CBU (4, 3, /2) |
3 | 4 × 128 × 1 | RSBU (4, 3) | RBU (4, 3) | CBU (4, 3) |
1 | 8 × 64 × 1 | RSBU (8, 3, /2) | RBU (8, 3, /2) | CBU (8, 3, /2) |
3 | 8 × 64 × 1 | RSBU (8, 3) | RBU (8, 3) | CBU (8, 3) |
1 | 16 × 32 × 1 | RSBU (16, 3, /2) | RBU (16, 3, /2) | CBU (16, 3, /2) |
3 | 16 × 32 × 1 | RSBU (16, 3) | RBU (16, 3) | CBU (16, 3) |
1 | 16 | BN, ReLU, GAP | BN, ReLU, GAP | BN, ReLU, GAP |
1 | 7 | FC | FC | FC |
Method | Test Accuracy |
---|---|
DRSN | 92.25 |
ResNet | 91.26 |
ConvNet | 86.34 |
Method | Test Accuracy |
---|---|
DRSN | 96.18 |
ResNet | 94.49 |
ConvNet | 89.86 |
Method | Test Accuracy |
---|---|
DRSN | 99.94 |
ResNet | 99.61 |
ConvNet | 93.63 |
Method | Test Accuracy |
---|---|
DRSN | 99.88 |
ResNet | 99.71 |
ConvNet | 81.67 |
Model | DRSN | ResNet | ConvNet |
---|---|---|---|
Quantity of parameters | 12,215 | 8855 | 8855 |
Time per epoch | 2.56 s | 1.57 s | 1.55 s |
Frequency | 460 MHz | 512 MHz | 1024 MHz |
---|---|---|---|
Average accuracy | 96.45 | 97.11 | 99.05 |
Time | 405.63 | 409.50 | 417.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Pan, J.; Han, Z.; Guo, L. Recognition of Noisy Radar Emitter Signals Using a One-Dimensional Deep Residual Shrinkage Network. Sensors 2021, 21, 7973. https://doi.org/10.3390/s21237973
Zhang S, Pan J, Han Z, Guo L. Recognition of Noisy Radar Emitter Signals Using a One-Dimensional Deep Residual Shrinkage Network. Sensors. 2021; 21(23):7973. https://doi.org/10.3390/s21237973
Chicago/Turabian StyleZhang, Shengli, Jifei Pan, Zhenzhong Han, and Linqing Guo. 2021. "Recognition of Noisy Radar Emitter Signals Using a One-Dimensional Deep Residual Shrinkage Network" Sensors 21, no. 23: 7973. https://doi.org/10.3390/s21237973