Addressing Gaps in Small-Scale Fisheries: A Low-Cost Tracking System †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitored Vessel
2.2. System Architecture
2.3. Data Structure and Processing
3. Results
3.1. Data Quality
3.2. Processing and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIS | Automated Identification Systems |
AWS | Amazon Web Services |
EMFAF | European Maritime Fisheries and Aquaculture Fund |
EU | European Union |
EPS | Evolved Packet System |
FMS | Fleet Management System |
GPS | Global Positioning System |
gRPC | Google Remote Procedure Call |
ICES | International Council for the Exploration of the Sea |
iVMS | inshore Vessel Monitoring Systems |
LoRa | Long Range |
LoRaWAN | Long Range Wide Area Network |
MQTTS | Message Queuing Telemetry Transport |
PKI | Public Key Infrastructure |
SSF | Small-scale Fisheries |
VMS | Vessel Monitoring Systems |
3G/4G | Third/Fourth generation of broadband cellular network |
Appendix A
Attribute | Description | Value |
---|---|---|
id | Ping identification | Number: integer |
priority | I/O property type of priority | 0–3 |
sat | Number of satellites | >0 |
event | System event | 0 to 999 |
sensor | Proximity sensor state | 0–1 |
io22 | Current Profile | 1 to 5 |
io71 | GNSS status | 0—off |
1—no antenna | ||
2—no fix | ||
3—got fix | ||
4—sleep | ||
5—over current | ||
motion | Motion state | 0–1 |
rssi | Received signal strength indicator | 1 to 5 |
io200 | Deep Sleep mode | 0 – No Sleep |
1—GPS Sleep | ||
2—Deep Sleep | ||
3—Online Sleep | ||
ignition | Ignition state | 0–1 |
battery | Teltonika Battery Voltage | Voltage:mA |
io68 | Battery Current | Voltage:mA |
pdop | Position Dilution of Precision | Number: float |
hdop | Horizontal dilution of precision | Number: float |
power | Vessel Battery Voltage | Voltage:mA |
io24 | Speed Over Ground [km/h] | >0 |
distance | Distance from previous ping | Distance: metres |
totalDistance | Odometer | Distance: metres |
hours | Hours counter | Hour: ms |
deviceId | Device identification | Number: integer |
type | Event type | geofenceExit-gefenceEnter |
deviceTime | Device time | timestamp |
latitude | Latitude | −90 to 90 |
longitude | Longitude | 180 to 180 |
altitude | Altitude | Altitude: metres |
speed | Speed Over Ground [knot] | >0 |
course | Course Over Ground | −180 to 180 |
accuracy | Accuracy | Number: integer |
References
- Armelloni, E.N.; Tassetti, A.N.; Ferrà, C.; Galdelli, A.; Scanu, M.; Mancini, A.; Fabi, G.; Scarcella, G. AIS data, a mine of information on trawling fleet mobility in the Mediterranean Sea. Mar. Policy 2021, 129, 104571. [Google Scholar] [CrossRef]
- Tickler, D.; Meeuwig, J.J.; Palomares, M.L.; Pauly, D.; Zeller, D. Far from home: Distance patterns of global fishing fleets. Sci. Adv. 2018, 4, eaar3279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroodsma, D.A.; Mayorga, J.; Hochberg, T.; Miller, N.A.; Boerder, K.; Ferretti, F.; Wilson, A.; Bergman, B.; White, T.D.; Block, B.A.; et al. Tracking the global footprint of fisheries. Science 2018, 359, 904–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrà, C.; Tassetti, A.N.; Grati, F.; Pellini, G.; Polidori, P.; Scarcella, G.; Fabi, G. Mapping change in bottom trawling activity in the Mediterranean Sea through AIS data. Mar. Policy 2018, 94, 275–281. [Google Scholar] [CrossRef]
- White, T.D.; Ferretti, F.; Kroodsma, D.A.; Hazen, E.L.; Carlisle, A.B.; Scales, K.L.; Bograd, S.J.; Block, B.A. Predicted hotspots of overlap between highly migratory fishes and industrial fishing fleets in the northeast Pacific. Sci. Adv. 2019, 5, eaau3761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, E.N.; Boerder, K.; Matwin, S.; Worm, B. Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning. PLoS ONE 2016, 11, e0158248. [Google Scholar] [CrossRef]
- Stelzenmüller, V.; Rogers, S.I.; Mills, C.M. Spatio-temporal patterns of fishing pressure on UK marine landscapes, and their implications for spatial planning and management. ICES J. Mar. Sci. 2008, 65, 1081–1091. [Google Scholar] [CrossRef] [Green Version]
- Farella, G.; Tassetti, A.N.; Menegon, S.; Bocci, M.; Ferrà, C.; Grati, F.; Fadini, A.; Giovanardi, O.; Fabi, G.; Raicevich, S.; et al. Ecosystem-Based MSP for Enhanced Fisheries Sustainability: An Example from the Northern Adriatic (Chioggia—Venice and Rovigo, Italy). Sustainability 2021, 13, 1211. [Google Scholar] [CrossRef]
- McCauley, D.J.; Woods, P.; Sullivan, B.; Bergman, B.; Jablonicky, C.; Roan, A.; Hirshfield, M.; Boerder, K.; Worm, B. Ending hide and seek at sea. Science 2016, 351, 1148–1150. [Google Scholar] [CrossRef] [Green Version]
- Tassetti, A.; Ferrà, C.; Fabi, G. Rating the effectiveness of fishery-regulated areas with AIS data. Ocean Coast. Manag. 2019, 175, 90–97. [Google Scholar] [CrossRef]
- EC. Regulation (EU) No 508/2014 of the European Parliament and of the Council of 15 May 2014 on the European Maritime and Fisheries Fund and Repealing Council Regulations (EC) No 2328/2003, (EC) No 861/2006, (EC) No 1198/2006 and (EC) No 791/2007 and Regulation (EU) No 1255/2011 of the European Parliament and of the Council). 2014. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0508&from=EN (accessed on 14 December 2021).
- González-Álvarez, J.; García-de-la Fuente, L.; García-Flórez, L.; Fernández-Rueda, M.d.P.; Alcázar-Álvarez, J.L. Identification and Characterization of Métiers in Multi-Species Artisanal Fisheries. A Case Study in Northwest Spain. Nat. Resour. 2016, 7, 295–314. [Google Scholar] [CrossRef] [Green Version]
- Tzanatos, E.; Somarakis, S.; Tserpes, G.; Koutsikopoulos, C. Identifying and classifying small-scale fisheries métiers in the Mediterranean: A case study in the Patraikos Gulf, Greece. Fish. Res. 2006, 81, 158–168. [Google Scholar] [CrossRef]
- Maynou, F.; Recasens, L.; Lombarte, A. Fishing tactics dynamics of a Mediterranean small-scale coastal fishery. Aquat. Living Resour. 2011, 24, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Petetta, A.; Vasapollo, C.; Virgili, M.; Bargione, G.; Lucchetti, A. Pots vs trammel nets: A catch comparison study in a Mediterranean small-scale fishery. PeerJ 2020, 8, e9287. [Google Scholar] [CrossRef]
- Mulazzani, L.; Trevisi, R.; Manrique, R.; Malorgio, G. Blue growth and the relationship between ecosystem services and human activities: The Salento artisanal fisheries case study. Ocean Coast. Manag. 2016, 134, 120–128. [Google Scholar] [CrossRef]
- Levy, Y.; Frid, O.; Weinberger, A.; Sade, R.; Adam, Y.; Kandanyan, U.; Berkun, V.; Perry, N.; Edelist, D.; Goren, M.; et al. A small fishery with a high impact on sea turtle populations in the eastern Mediterranean. Zool. Middle East 2015, 61, 300–317. [Google Scholar] [CrossRef]
- Veiga, P.; Pita, C.; Rangel, M.; Gonçalves, J.M.; Campos, A.; Fernandes, P.G.; Sala, A.; Virgili, M.; Lucchetti, A.; Brčić, J.; et al. The EU landing obligation and European small-scale fisheries: What are the odds for success? Mar. Policy 2016, 64, 64–71. [Google Scholar] [CrossRef]
- Virgili, M.; Vasapollo, C.; Lucchetti, A. Can ultraviolet illumination reduce sea turtle bycatch in Mediterranean set net fisheries? Fish. Res. 2018, 199, 1–7. [Google Scholar] [CrossRef]
- Gough, C.L.A.; Dewar, K.M.; Godley, B.J.; Zafindranosy, E.; Broderick, A.C. Evidence of Overfishing in Small-Scale Fisheries in Madagascar. Front. Mar. Sci. 2020, 7, 317. [Google Scholar] [CrossRef]
- Dalskov, J.; Glemarec, G.; Kroner, A.; Kindt-Larsen, L.; Nielsen, P. Research for PECH Committee—Workshop on Electronic Technologies for Fisheries—Part III: Systems Adapted for Small-Scale Vessels; European Parliament, Policy Department for Structural and Cohesion Policies: Brussels, Belgium, 2021; Available online: https://www.europarl.europa.eu/thinktank/en/document/IPOLSTU(2021)690863 (accessed on 14 December 2021).
- Lima, M.S.P.; Oliveira, J.E.L.; de Nóbrega, M.F.; Lopes, P.F.M. The use of Local Ecological Knowledge as a complementary approach to understand the temporal and spatial patterns of fishery resources distribution. J. Ethnobiol. Ethnomed. 2017, 13, 30. [Google Scholar] [CrossRef] [Green Version]
- Grati, F.; Azzurro, E.; Scanu, M.; Tassetti, A.N.; Bolognini, L.; Guicciardi, S.; Vitale, S.; Scannella, D.; Carbonara, P.; Dragičević, B.; et al. Mapping small-scale fisheries through a coordinated participatory strategy. Fish Fish. 2022. [Google Scholar] [CrossRef]
- Azzurro, E.; Cerri, J. Participatory mapping of invasive species: A demonstration in a coastal lagoon. Mar. Policy 2021, 126, 104412. [Google Scholar] [CrossRef]
- Dunn, D.; Stewart, K.; Bjorkland, R.; Haughton, M.; Singh-Renton, S.; Lewison, R.; Thorne, L.; Halpin, P. A regional analysis of coastal and domestic fishing effort in the wider Caribbean. Fish. Res. 2010, 102, 60–68. [Google Scholar] [CrossRef]
- Kavadas, S.; Maina, I.; Damalas, D.; Dokos, I.; Pantazi, M.; Vassilopoulou, V. Multi-Criteria Decision Analysis as a tool to extract fishing footprints and estimate fishing pressure: Application to small scale coastal fisheries and implications for management in the context of the Maritime Spatial Planning Directive. Mediterr. Mar. Sci. 2015, 16, 294–304. [Google Scholar] [CrossRef] [Green Version]
- European Maritime and Fisheries Fund. Available online: https://emff.marine.ie/biotag-biodiversity/deployment-vessel-monitoring-systems-ivms-inshore-fishing-vessels-using-dredges (accessed on 14 December 2021).
- Nielsen, P.; Nielsen, M.M.; McLaverty, C.; Kristensen, K.; Geitner, K.; Olsen, J.; Saurel, C.; Petersen, J.K. Management of bivalve fisheries in marine protected areas. Mar. Policy 2021, 124, 104357. [Google Scholar] [CrossRef]
- Mouat, B.; Bergh, M.; Shelmerdine, R.; Leach, K.; Ladd-Jones, H.; James, M. Scottish Inshore Fisheries Integrated Data System (SIFIDS): Review and Optimisation of Shellfish Data Collection Strategies for Scottish Inshore Waters; Marine Alliance for Science and Technology for Scotland (MASTS): St Andrews, UK, 2018; 169p. [Google Scholar] [CrossRef]
- van Helmond, A.T.; Mortensen, L.O.; Plet-Hansen, K.S.; Ulrich, C.; Needle, C.L.; Oesterwind, D.; Kindt-Larsen, L.; Catchpole, T.; Mangi, S.; Zimmermann, C.; et al. Electronic monitoring in fisheries: Lessons from global experiences and future opportunities. Fish Fish. 2020, 21, 162–189. [Google Scholar] [CrossRef]
- Behivoke, F.; Etienne, M.P.; Guitton, J.; Randriatsara, R.M.; Ranaivoson, E.; Léopold, M. Estimating fishing effort in small-scale fisheries using GPS tracking data and random forests. Ecol. Indic. 2021, 123, 107321. [Google Scholar] [CrossRef]
- Mendo, T.; Smout, S.; Photopoulou, T.; James, M. Identifying fishing grounds from vessel tracks: Model-based inference for small scale fisheries. R. Soc. Open Sci. 2019, 6, 191161. [Google Scholar] [CrossRef] [Green Version]
- ICES. Workshop on Geo-Spatial Data for Small-Scale Fisheries (WKSSFGEO) Report; Technical Report. 2022; in press. [Google Scholar]
- EC. P9_TA(2021)0076—Amendments Adopted by the European Parliament on 11 March 2021 on the Proposal for a Regulation of the European Parliament and of the Council Amending Council Regulation (EC) No 1224/2009, and Amending Council Regulations (EC) No 768/2005, (EC) No 1967/2006, (EC) No 1005/2008, and Regulation (EU) No 2016/1139 of the European Parliament and of the Council as Regards Fisheries Control (COM(2018)0368—C8-0238/2018—2018/0193(COD)). 2021. Available online: https://www.europarl.europa.eu/doceo/document/TA-9-2021-0076_EN.pdf (accessed on 14 December 2021).
- Tassetti, A.N.; Galdelli, A.; Pulcinella, J.; Mancini, A.; Bolognini, L. A low-cost and low-burden secure solution to track small-scale fisheries. In Proceedings of the 2021 International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Reggio Calabria, Italy, 4–6 October 2021; pp. 382–387. [Google Scholar] [CrossRef]
- Traccar—Modern GPS Tracking Platform. Available online: https://www.traccar.org/ (accessed on 14 December 2021).
- Teltonika FMM640. Available online: https://teltonika-gps.com/product/fmm640/ (accessed on 14 December 2021).
- Amoroso, R.O.; Pitcher, C.R.; Rijnsdorp, A.D.; McConnaughey, R.A.; Parma, A.M.; Suuronen, P.; Eigaard, O.R.; Bastardie, F.; Hintzen, N.T.; Althaus, F.; et al. Bottom trawl fishing footprints on the world’s continental shelves. Proc. Natl. Acad. Sci. USA 2018, 115, E10275–E10282. [Google Scholar] [CrossRef] [Green Version]
- EC. Council Regulation (EC) No 1967/2006 of 21 December 2006 Concerning Management Measures for the Sustainable Exploitation of Fishery Resources in the Mediterranean Sea, Amending Regulation (EEC) No 2847/93 and Repealing Regulation (EC) No 1626/94. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1967-20120119&from=EN (accessed on 14 December 2021).
- Galdelli, A.; Mancini, A.; Frontoni, E.; Tassetti, A.N. A Feature Encoding Approach and a Cloud Computing Architecture to Map Fishing Activities. In Proceedings of the 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Online, 17–19 August 2021; Volume 7, p. V007T07A003. [Google Scholar] [CrossRef]
- Galdelli, A.; Mancini, A.; Tassetti, A.; Ferrà Vega, C.; Armelloni, E.; Scarcella, G.; Fabi, G.; Zingaretti, P. A cloud computing architecture to map trawling activities using positioning data. In Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Anaheim, CA, USA, 18–21 August 2019; Volume 9. [Google Scholar] [CrossRef]
- Sencha Ext JS Framework. Available online: https://www.sencha.com/products/extjs/ (accessed on 14 December 2021).
- Traccar Architecture. Available online: https://www.traccar.org/architecture/ (accessed on 14 December 2021).
- Amazon Web Services Lambda. Available online: https://aws.amazon.com/lambda/ (accessed on 14 December 2021).
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.R-project.org/ (accessed on 14 December 2021).
- Pulcinella, J.; Galdelli, A.; Mancini, A.; Bolognini, L.; Tassetti, A.N. Raw Data and Code for “Addressing Gaps in Small-Scale Fisheries: A Low-Cost Tracking System” (v1.0) [Data set]. Zenodo 2021. [Google Scholar] [CrossRef]
- Guyader, O.; Berthou, P.; Koutsikopoulos, C.; Alban, F.; Demaneche, S.; Gaspar, M.; Eschbaum, R.; Fahy, E.; Tully, O.; Reynal, L.; et al. Small scale fisheries in Europe: A comparative analysis based on a selection of case studies. Fish. Res. 2013, 140, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Said, A.; Chuenpagdee, R. Aligning the sustainable development goals to the small-scale fisheries guidelines: A case for EU fisheries governance. Mar. Policy 2019, 107, 103599. [Google Scholar] [CrossRef]
- Lloret, J.; Biton-Porsmoguer, S.; Carreño, A.; Di Franco, A.; Sahyoun, R.; Melià, P.; Claudet, J.; Sève, C.; Ligas, A.; Belharet, M.; et al. Recreational and small-scale fisheries may pose a threat to vulnerable species in coastal and offshore waters of the western Mediterranean. ICES J. Mar. Sci. 2020, 77, 2255–2264. [Google Scholar] [CrossRef]
- Agapito, M.; Chuenpagdee, R.; Devillers, R.; Gee, J.; Johnson, A.F.; Pierce, G.J.; Trouillet, B. Beyond the basics: Improving information about small-scale fisheries. In Transdisciplinarity for Small-Scale Fisheries Governance; Chuenpagdee, R., Jentoft, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 377–395. [Google Scholar] [CrossRef]
- Daw, T.M. Spatial distribution of effort by artisanal fishers: Exploring economic factors affecting the lobster fisheries of the Corn Islands, Nicaragua. Fish. Res. 2008, 90, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Stewart, K.R.; Lewison, R.L.; Dunn, D.C.; Bjorkland, R.H.; Kelez, S.; Halpin, P.N.; Crowder, L.B. Characterizing Fishing Effort and Spatial Extent of Coastal Fisheries. PLoS ONE 2010, 5, e14451. [Google Scholar] [CrossRef] [Green Version]
- Mendo, T.; Smout, S.; Russo, T.; D’Andrea, L.; James, M. Effect of temporal and spatial resolution on identification of fishing activities in small-scale fisheries using pots and traps. ICES J. Mar. Sci. 2019, 76, 1601–1609. [Google Scholar] [CrossRef]
- FAO. The State of Mediterranean and Black Sea Fisheries 2020; General Fisheries Commission for the Mediterranean: Rome, Italy, 2020. [CrossRef]
- AWS Services Pricing. Available online: https://aws.amazon.com/pricing/ (accessed on 14 December 2021).
- James, M.; Mendo, T.; Jones, E.L.; Orr, K.; McKnight, A.; Thompson, J. AIS data to inform small scale fisheries management and marine spatial planning. Mar. Policy 2018, 91, 113–121. [Google Scholar] [CrossRef] [Green Version]
- LoRa Alliance. LoRaWAN SECURITY. Available online: https://lora-alliance.org/wp-content/uploads/2020/11/lorawan_security_whitepaper.pdf (accessed on 14 December 2021).
- Adefemi Alimi, K.O.; Ouahada, K.; Abu-Mahfouz, A.M.; Rimer, S. A Survey on the Security of Low Power Wide Area Networks: Threats, Challenges, and Potential Solutions. Sensors 2020, 20, 5800. [Google Scholar] [CrossRef]
- Ekene, O.E.; Ruhl, R.; Zavarsky, P. Enhanced User Security and Privacy Protection in 4G LTE Network. In Proceedings of the 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), Atlanta, GA, USA, 10–14 June 2016; Volume 2, pp. 443–448. [Google Scholar] [CrossRef]
- Bikos, A.N.; Sklavos, N. LTE/SAE Security Issues on 4G Wireless Networks. IEEE Secur. Priv. 2013, 11, 55–62. [Google Scholar] [CrossRef]
- Deutsche Telekom. NB-IoT, LoRaWAN, Sigfox: An Up-to-Date Comparison. Available online: https://iot.telekom.com/resource/blob/data/492968/e396f72b831b0602724ef71056af5045/mobile-iot-network-comparison-nb-iot-lorawan-sigfox.pdf (accessed on 14 December 2021).
- Hintzen, N.T.; Bastardie, F.; Beare, D.; Piet, G.J.; Ulrich, C.; Deporte, N.; Egekvist, J.; Degel, H. VMStools: Open-source software for the processing, analysis and visualisation of fisheries logbook and VMS data. Fish. Res. 2012, 115–116, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Galdelli, A.; Armelloni, E.N.; Ferrà, C.; Pulcinella, J.; Scarcella, G.; Tassetti, A.N. R4AIS: An R workflow to process AIS data for fishery (v1.0.2) [Data set and code]. Zenodo 2021. [Google Scholar] [CrossRef]
- Olsen, L.; Herrmann, B.; Sistiaga, M.; Grimaldo, E. Effect of gear soak time on size selection in the snow crab pot fishery. Fish. Res. 2019, 214, 157–165. [Google Scholar] [CrossRef]
- Jennings, S. Indicators to support an ecosystem approach to fisheries. Fish Fish. 2005, 6, 212–232. [Google Scholar] [CrossRef]
- Chassot, E.; Bonhommeau, S.; Reygondeau, G.; Nieto, K.; Polovina, J.J.; Huret, M.; Dulvy, N.K.; Demarcq, H. Satellite remote sensing for an ecosystem approach to fisheries management. ICES J. Mar. Sci. 2011, 68, 651–666. [Google Scholar] [CrossRef] [Green Version]
- Interreg Italy-Croatia ARGOS. Available online: https://www.italy-croatia.eu/web/argos (accessed on 14 December 2021).
- FAO. Information and Communication Technologies Benefit Fishing Communities. Policies to Support Improved Communications for Development. New Directions in Fisheries; A Series of Policy Briefs on Development Issues; FAO: Rome, Italy, 2007; Report No.: 7; Available online: http://www.fao.org/3/a-a0991e.pdf (accessed on 14 December 2021).
- Jeffers, V.F.; Humber, F.; Nohasiarivelo, T.; Botosoamananto, R.; Anderson, L.G. Trialling the use of smartphones as a tool to address gaps in small-scale fisheries catch data in southwest Madagascar. Mar. Policy 2019, 99, 267–274. [Google Scholar] [CrossRef]
- Petrik, M.; Serge Raemakers, D. The Case for Supporting Small-Scale Fisheries Governance through ICT. South African Institute of International Affair; Technical Report. 2018. Available online: http://www.jstor.org/stable/resrep28343 (accessed on 14 December 2021).
- Tilley, A.; Dos Reis Lopes, J.; Wilkinson, S.P. PeskAAS: A near-real-time, open-source monitoring and analytics system for small-scale fisheries. PLoS ONE 2020, 15, e0234760. [Google Scholar] [CrossRef]
Technology | Status |
---|---|
LoRa | Open-access (Lora licensed) |
MQTT (Mosquitto) | Open-source (EPL/EDL licensed) |
AWS | Open-access (Amazon licensed) |
Traccar | Open-source and |
open-access (Traccar licensed) | |
MongoDB | Open-source (MongoDB license) |
NodeJS | Open-source (MIT license) |
Angular | Open-source (MIT license) |
Kibana, | Open-source (Elastic license 2.0) |
elasticsearch | |
GeoServer | open-source (Open Source |
Geospatial Foundation license) | |
Cellular | Mobile Operator licensed |
Docker | Open source (Docker licensed) |
Trip | tripStart | tripEnd | Duration (h) | SA * (kmh) | Distance (km) | Hauler (h) | Entry | Exit |
---|---|---|---|---|---|---|---|---|
1 | “2021-11-01 01:40:10” | “2021-11-01 06:50:47” | 5.18 | 4.27 | 47.27 | 3.03 | 2 | 2 |
2 | “2021-11-03 07:48:34” | “2021-11-03 11:50:37” | 4.03 | 4.28 | 34.49 | 1.97 | 2 | 1 |
3 | “2021-11-03 15:58:46” | “2021-11-03 16:37:23” | 0.64 | 7.46 | 9.44 | 0.00 | 1 | 1 |
4 | “2021-11-04 02:46:35” | “2021-11-04 04:02:32” | 1.27 | 3.50 | 9.59 | 0.73 | 1 | 1 |
5 | “2021-11-04 15:37:07” | “2021-11-04 19:07:55” | 3.51 | 4.44 | 31.54 | 1.87 | 1 | 1 |
6 | “2021-11-05 02:11:56” | “2021-11-05 05:01:01” | 2.82 | 5.64 | 31.84 | 1.32 | 1 | 1 |
7 | “2021-11-07 15:07:38” | “2021-11-07 16:34:34” | 1.45 | 8.46 | 22.51 | 0.02 | 1 | 1 |
8 | “2021-11-08 02:43:32” | “2021-11-08 05:18:12” | 2.58 | 3.96 | 21.69 | 1.67 | 1 | 1 |
9 | “2021-11-08 06:24:19” | “2021-11-08 10:19:29” | 3.92 | 4.94 | 39.91 | 2.13 | 1 | 1 |
10 | “2021-11-10 14:18:54” | “2021-11-10 18:32:35” | 4.23 | 6.49 | 53.53 | 1.55 | 2 | 2 |
11 | “2021-11-11 01:39:33” | “2021-11-11 05:33:34” | 3.90 | 5.12 | 40.88 | 2.07 | 1 | 1 |
12 | “2021-11-11 15:23:24” | “2021-11-11 18:33:41” | 3.17 | 6.76 | 40.96 | 1.15 | 2 | 2 |
13 | “2021-11-12 01:43:35” | “2021-11-12 05:39:19” | 3.93 | 4.46 | 37.66 | 1.35 | 1 | 1 |
14 | “2021-11-12 07:06:50” | “2021-11-12 08:41:23” | 1.58 | 4.87 | 16.63 | 0.02 | 1 | 1 |
15 | “2021-11-13 01:41:42” | “2021-11-13 06:07:41” | 4.43 | 4.80 | 45.11 | 0.00 | 1 | 1 |
16 | “2021-11-14 14:59:38” | “2021-11-14 15:56:21” | 0.95 | 6.53 | 11.92 | 0.02 | 1 | 1 |
17 | “2021-11-15 02:41:28” | “2021-11-15 06:00:27” | 3.32 | 4.00 | 27.20 | 1.85 | 2 | 2 |
18 | “2021-11-19 06:54:01” | “2021-11-19 08:45:59” | 1.87 | 5.11 | 18.15 | 0.62 | 1 | 1 |
19 | “2021-11-20 01:58:53” | “2021-11-20 05:37:43” | 3.65 | 3.92 | 31.12 | 2.07 | 1 | 1 |
20 | “2021-11-20 06:38:39” | “2021-11-20 09:18:39” | 2.67 | 6.46 | 33.53 | 1.10 | 1 | 1 |
21 | “2021-11-21 14:02:21” | “2021-11-21 17:01:05” | 2.98 | 4.40 | 26.54 | 1.35 | 1 | 1 |
22 | “2021-11-22 01:45:45” | “2021-11-22 08:09:12” | 6.39 | 3.43 | 46.42 | 4.12 | 1 | 1 |
23 | “2021-11-24 14:07:27” | “2021-11-24 15:33:19” | 1.43 | 7.86 | 21.59 | 0.02 | 1 | 1 |
24 | “2021-11-25 01:39:22” | “2021-11-25 06:13:22” | 4.57 | 3.93 | 38.50 | 2.48 | 1 | 1 |
25 | “2021-11-25 07:28:34” | “2021-11-25 09:13:33” | 1.75 | 5.86 | 21.09 | 0.82 | 1 | 1 |
26 | “2021-11-25 16:04:59” | “2021-11-25 20:44:41” | 4.66 | 4.37 | 38.46 | 2.37 | 1 | 1 |
27 | “2021-11-26 14:06:30” | “2021-11-26 18:42:23” | 4.60 | 4.19 | 38.28 | 2.42 | 1 | 1 |
28 | “2021-11-29 05:13:32” | “2021-11-29 09:47:31” | 4.57 | 3.89 | 37.49 | 2.30 | 1 | 1 |
Technology | Cost | |
---|---|---|
Hardware | Data Traffic | |
LoRaWAN | EUR 5–30 | - |
Cellular | EUR 10–80 | EUR cent/KB |
AIS | EUR 200–400 (Class B) | - |
EUR 800–5000 (Class A) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassetti, A.N.; Galdelli, A.; Pulcinella, J.; Mancini, A.; Bolognini, L. Addressing Gaps in Small-Scale Fisheries: A Low-Cost Tracking System. Sensors 2022, 22, 839. https://doi.org/10.3390/s22030839
Tassetti AN, Galdelli A, Pulcinella J, Mancini A, Bolognini L. Addressing Gaps in Small-Scale Fisheries: A Low-Cost Tracking System. Sensors. 2022; 22(3):839. https://doi.org/10.3390/s22030839
Chicago/Turabian StyleTassetti, Anna Nora, Alessandro Galdelli, Jacopo Pulcinella, Adriano Mancini, and Luca Bolognini. 2022. "Addressing Gaps in Small-Scale Fisheries: A Low-Cost Tracking System" Sensors 22, no. 3: 839. https://doi.org/10.3390/s22030839
APA StyleTassetti, A. N., Galdelli, A., Pulcinella, J., Mancini, A., & Bolognini, L. (2022). Addressing Gaps in Small-Scale Fisheries: A Low-Cost Tracking System. Sensors, 22(3), 839. https://doi.org/10.3390/s22030839