A Simple and Robust Spectral Index for Identifying Lodged Maize Using Gaofen1 Satellite Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. GF-1 Satellite Data
2.3. Planet Satellite Data
2.4. Ground True Information
3. Method
3.1. Maize Mapping
3.2. Theoretical Analysis of Lodged Maize Reflectance
3.3. Lodged Maize Detection
3.4. Validation of Results
4. Results
4.1. Reflectance of Lodged Maize
4.2. Lodged Maize Area
4.3. Validation
4.3.1. Validating Samples
4.3.2. Cross-Comparison
4.3.3. Farmer Surveys
4.4. Comparison of SSI with NDVI
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, D.; Pang, L.; Xie, B. Typhoon disaster in China: Prediction, prevention, and mitigation. Nat. Hazards 2009, 49, 421–436. [Google Scholar] [CrossRef]
- Chauhan, S.; Darvishzadeh, R.; Boschetti, M.; Nelson, A. Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data. ISPRS J. Photogramm. Remote Sens. 2020, 164, 138–151. [Google Scholar] [CrossRef]
- Chauhan, S.; Darvishzadeh, R.; Boschetti, M.; Pepe, M.; Nelson, A. Remote sensing-based crop lodging assessment: Current status and perspectives. ISPRS J. Photogramm. Remote Sens. 2019, 151, 124–140. [Google Scholar] [CrossRef] [Green Version]
- Mao, Z.; Deng, L.; Zhao, X.; Hu, Y. Extraction of maize lodging in breeding plot based on UAV remote sensing. Chin. Agric. Sci. Bull. 2019, 35, 62–68. [Google Scholar]
- Kumpumaki, T.; Linna, P.; Lipping, T. Crop lodging analysis from UAS orthophone mosaic sentinel 2 image and crop yield monitor data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 7723–7726. [Google Scholar]
- Mi, C.; Zhang, X.; Li, S.; Yang, J.; Zhu, D.; Yang, Y. Assessment of environment lodging stress for maize using fuzzy synthetic evaluation. Math. Comput. Model. 2011, 54, 1053–1060. [Google Scholar] [CrossRef]
- Wu, W.; Wang, W.; Meadows, M.E.; Yao, X.; Peng, W. Cloud-based typhoon-derived paddy rice flooding and lodging detection using multi-temporal Sentinel-1&2. Front. Earth Sci. 2019, 13, 682–694. [Google Scholar]
- Farfan, B.I.D.; Murray, S.C.; Labar, S.; Pietsch, D. A multi-environment trial analysis shows slight grain yield improvement in Texas commercial maize. F. Crop. Res. 2013, 149, 167–176. [Google Scholar] [CrossRef]
- Wang, L.; Gu, X.; Hu, S.; Yang, G.; Wang, L.; Fan, Y.; Wang, Y. Remote sensing monitoring of maize lodging disaster with multi-temporal HJ-1B CCD image. Sci. Agric. Sin. 2016, 49, 4120–4129. [Google Scholar]
- Li, S.; Wang, Y.; Hu, C.; Yan, Y. Effects of strong wind lodging at pre-and post-tasseling stages on growth and yield of summer maize. China. J. Appl. Ecol. 2015, 26, 2405–2413. [Google Scholar]
- Xue, J.; Wang, K.R.; Xie, R.Z.; Gou, L.; Zhang, W.F.; Ming, B.; Hou, P.; Li, S. Research progress of maize lodging during late stage. Sci. Agric. Sin. 2018, 51, 1845–1854. [Google Scholar]
- Yang, H.; Chen, E.; Li, Z.; Zhao, C.; Yang, G.; Pignatti, S.; Casa, R.; Zhao, L. Wheat lodging monitoring using polarimetric index from RADARSAT-2 data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 157–166. [Google Scholar] [CrossRef]
- Wang, J.; Li, K.; Shao, Y.; Wang, Z. Monitoring of rice lodging using Sentinel-1 data. J. Phys. Conf. Ser. 2020, 1651, 012080. [Google Scholar] [CrossRef]
- Chauhan, S.; Darvishzadeh, R.; Boschetti, M.; Nelson, A. Estimation of crop angle of inclination for lodged wheat using multi-sensor SAR data. Remote Sens. Environ. 2020, 236, 111488. [Google Scholar] [CrossRef]
- Shu, M.; Zhou, L.; Gu, X.; Ma, Y.; Sun, Q.; Yang, G.; Zhou, C. Monitoring of maize lodging using multi-temporal Sentinel-1 SAR data. Adv. Sp. Res. 2020, 65, 470–480. [Google Scholar] [CrossRef]
- Chauhan, S.; Darvishzadeh, R.; Lu, Y.; Boschetti, M.; Nelson, A. Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 2020, 243, 111804. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Ren, G.; Li, Z.; Wang, X. Estimation of maize lodging area based on Worldview-2 image. Trans. Chin. Soc. Agric. Eng. 2016, 32, 1–5. [Google Scholar]
- Wang, J.; Li, K.; Shao, Y.; Zhang, F.; Wang, Z.; Guo, X.; Qin, Y.; Liu, X. Analysis of combining SAR and optical optimal parameters to classify typhoon-invasion lodged rice: A case study using the random forest method. Sensors 2020, 20, 7346. [Google Scholar] [CrossRef]
- Zhang, Z.; Flores, P. Detection of wheat lodging plots using indices derived from multi-spectral and visible images lodging-nonlodging. Nondestruct. Eval. Agro-Prod. 2021, 23, 267–289. [Google Scholar] [CrossRef]
- Han, D.; Yang, H.; Yang, G.; Qiu, C. Monitoring model of maize lodging based on Sentinel-1 radar image. Trans. Chin. Soc. Agric. Eng. 2018, 34, 166–172. [Google Scholar]
- Wang, J.; Liu, S.; Lan, Y.; Chen, L.; Guo, Y.; Wang, Y. Method of maize lodging recognition based on HJ-1A/B CCD data. Chin. J. Agrometeorol. 2020, 41, 121–128. [Google Scholar]
- Chen, J.; Li, H.; Han, Y. Potential of Radarsat-2 data on identifying sugarcane lodging caused by typhoon. In Proceedings of the 2016 5th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Tianjin, China, 18–20 July 2016. [Google Scholar]
- Zhou, Q.; Yu, Q.; Liu, J.; Wu, W.; Tang, H. Perspective of Chinese GF-1 high-resolution satellite data in agricultural remote sensing monitoring. J. Integr. Agr. 2017, 16, 242–251. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Ren, T.; Liu, D.; Ma, Z.; Tong, L.; Zhang, C.; Zhou, T.; Zhang, X.; Li, S. Identification of seed maize fields with high spatial resolution and multiple spectral remote sensing using random forest classifier. Remote Sens. 2020, 12, 362. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Cheng, S.; Sun, Q.; Gu, X.; Yang, G.; Shu, M.; Feng, H. Remote sensing of regional-scale maize lodging using multitemporal GF-1 images. J. Appl. Remote Sens. 2020, 14, 014514. [Google Scholar] [CrossRef]
- Liu, P.; Chen, X. Intercropping classification from GF-1 and GF-2 satellite imagery using a rotation forest based on an SVM. ISPRS Int. J. Geo-Inf. 2019, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Csillik, O.; Kumar, P.; Mascaro, J.; O’Shea, T.; Asner, G.P. Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Sci. Rep. 2019, 9, 17831. [Google Scholar] [CrossRef] [Green Version]
- Houborg, R.; McCabe, M.F. A cubesat enabled spatio-temporal enhancement method (CESTEM) utilizing Planet, Landsat and MODIS data. Remote Sens. Environ. 2018, 209, 211–226. [Google Scholar] [CrossRef]
- Yu, B.; Shang, S. Multi-year mapping of maize and sunflower in Hetao Irrigation District of China with high spatial and temporal resolution vegetation index series. Remote Sens. 2017, 9, 855. [Google Scholar] [CrossRef] [Green Version]
- Ren, T.; Liu, Z.; Zhang, L.; Liu, D.; Xi, X.; Kang, Y.; Zhao, Y.; Zhang, C.; Li, S.; Zhang, X. Early identification of seed maize and common maize production fields using Sentinel-2 images. Remote Sens. 2020, 12, 2140. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Abubakar, G.A.; Wang, K.; Shahtahamssebi, A.; Xue, X.; Belete, M.; Gudo, A.J.A.; Shuka, K.A.M.; Gan, M. Mapping maize fields by using multi-temporal Sentinel-1A and Sentinel-2A images in Makarfi, Northern Nigeria, Africa. Sustainability 2020, 12, 2539. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Zhang, H.; Yang, H.; Zhang, L. Support vector machine classification of crop lands using Sentinel-2 imagery. In Proceedings of the 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics), Hangzhou, China, 6–9 August 2018. [Google Scholar]
- Sun, Q.; Sun, L.; Shu, M.; Gu, X.; Yang, G.; Zhou, L. Monitoring maize lodging grades via unmanned aerial vehicle multispectral image. Plant. Phenomics 2019, 2019, 5704154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ollinger, S. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2010, 189, 375–394. [Google Scholar] [CrossRef] [PubMed]
- DeLucia, E.; Nelson, K.; Vogelmann, T.; Smith, W. Contribution of intercellular reflectance to photosynthesis in shade leaves. Plant Cell Environ. 2006, 19, 159–170. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agronomy J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Suryanarayana Reddy, G.; Narasimha Rao, C.L.; Venkataratnam, L.; Krishna Rao, P.V. Influence of plant pigments on spectral reflectance of maize, groundnut and soybean grown in semi-arid environments. Int. J. Remote Sens. 2020, 22, 3373–3380. [Google Scholar] [CrossRef]
- Chen, D.; Huang, J.; Jackson, T. Vegetation water content estimation for corn and soybeans using spectral indices from MODIS near- and short-wave infrared bands. Remote Sens. Environ. 2005, 98, 225–236. [Google Scholar] [CrossRef]
- Milillo, P.; Riel, B.; Minchew, B.; Yun, S.-H.; Simons, M.; Lundgren, P. On the synergistic use of SAR constellations’ data exploitation for earth science and natural hazard response. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1095–1100. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, J.; Li, P.; Shi, L.; Zhang, L. Characterizing lodging damage in wheat and canola using Radarsat-2 polarimetric SAR data. Remote Sens. Lett. 2017, 8, 667–675. [Google Scholar] [CrossRef]
Satellite Type | Band Number | Band | Wavelength Range (µm) | Spatial Resolution (m) |
---|---|---|---|---|
GF-1 WFV | 1 | Blue | 0.45–0.52 | 16 |
2 | Green | 0.52–0.59 | ||
3 | Red | 0.63–0.69 | ||
4 | Near-infrared | 0.77–0.89 | ||
Planet | 1 | Blue | 0.46–0.52 | 3 |
2 | Green | 0.50–0.59 | ||
3 | Red | 0.59–0.67 | ||
4 | Near-infrared | 0.78–0.86 |
Band | Zhaodong City | Ningjiang District | ||
---|---|---|---|---|
Increment | Amplification (%) | Increment | Amplification (%) | |
Blue | 0.0212 | 112.77 | 0.0105 | 43.57 |
Green | 0.0333 | 67.14 | 0.0190 | 31.00 |
Red | 0.0312 | 95.41 | 0.0161 | 35.62 |
Near-infrared | 0.0686 | 14.59 | 0.1089 | 25.06 |
Identified Results | Zhaodong City | Ningjiang District | |||||
---|---|---|---|---|---|---|---|
Properties of Validating Samples | Lodged Maize | Non-Lodged Maize | Producer’s Accuracy (PA, %) | Lodged Maize | Non-Lodged Maize | Producer’s Accuracy (PA, %) | |
Lodged maize | 20 | 1 | 95.24 | 18 | 2 | 90 | |
Non-lodged maize | 2 | 19 | 90.48 | 2 | 12 | 85.71 | |
User’s accuracy (UA, %) | 90.91 | 95 | 90 | 85.71 | |||
Overall accuracy | 92.86% | 88.24% |
Lodging Proportion (%) | Number of Questionnaires in Zhaodong City | Number of Questionnaires in Ningjiang District |
---|---|---|
81–100 | 5 | 9 |
61–80 | 4 | 2 |
41–60 | 7 | 5 |
21–40 | 0 | 1 |
0–20 | 2 | 0 |
Sum | 18 | 17 |
Index | Zhaodong City | Ningjiang District | ||||||
---|---|---|---|---|---|---|---|---|
Non-Lodged | Lodged | Increment | Amplification | Non-Lodged | Lodged | Increment | Amplification | |
Spectral sum | 0.5714 | 0.7256 | 0.1542 | 26.99% | 0.5652 | 0.7197 | 0.1545 | 27.34% |
NDVI | 0.8699 | 0.7886 | −0.0813 | −9.35% | 0.7528 | 0.7426 | −0.0102 | −1.35% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Sun, L.; Pei, Z.; Sun, J.; Li, H.; Jiao, W.; You, J. A Simple and Robust Spectral Index for Identifying Lodged Maize Using Gaofen1 Satellite Data. Sensors 2022, 22, 989. https://doi.org/10.3390/s22030989
Chen Y, Sun L, Pei Z, Sun J, Li H, Jiao W, You J. A Simple and Robust Spectral Index for Identifying Lodged Maize Using Gaofen1 Satellite Data. Sensors. 2022; 22(3):989. https://doi.org/10.3390/s22030989
Chicago/Turabian StyleChen, Yuanyuan, Li Sun, Zhiyuan Pei, Juanying Sun, He Li, Weijie Jiao, and Jiong You. 2022. "A Simple and Robust Spectral Index for Identifying Lodged Maize Using Gaofen1 Satellite Data" Sensors 22, no. 3: 989. https://doi.org/10.3390/s22030989