Estimation of Soil Organic Matter in Arid Zones with Coupled Environmental Variables and Spectral Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection and Analysis
2.3. Spectral Data Processing
2.4. Processing of Environment Variables
2.5. Modeling and Accuracy Verification
3. Results
3.1. Descriptive Statistics of Soil Properties
3.2. Characteristics of Reflection Spectral Curves under Each Auxiliary Variable Classification
3.3. SOM and Standard Error with Each Auxiliary Variable Classification
3.4. Plot of PCA under Each Auxiliary Variable
3.5. Soil SOM Modeling Based on Soil Spectra and Each Auxiliary Variable
3.6. Importance Analysis of Auxiliary Variables in the Model
4. Discussion
5. Conclusions
- Spectral classification exhibited significant differences in grouping reflectance curves and SOM contents, while the differences among other variables were small; therefore, spectral classification better distinguished the reflectance spectral data and maximized the variability of spectral characteristics for different SOM contents.
- The addition of the environmental factor to the spectral variables provided an effective predictive variable for estimation of SOM, which greatly improved the prediction accuracy of the model; the R2 was improved from 0.78 to 0.85.
- Spectral information played an important role in predictions of SOM contents.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Kolbe, H.; Zhang, R.; Ji, H. Soil Organic Carbon Management and Farmland Organic Matter Balance Method. Chin. Agric. Sci. 2020, 53, 332. [Google Scholar]
- Zhang, Z.; Ding, J.; Zhu, C.; Wang, J. Combination of efficient signal pre-processing and optimal band combination algorithm to predict soil organic matter through visible and near-infrared spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 240, 118553. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Yu, D. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments. Geoderma. 2014, 235–236, 316–322. [Google Scholar] [CrossRef]
- Luo, D.; Lei, W.; Peng, J.; Feng, C.; Ji, W.; Bai, Z. Field in Situ Spectral Inversion of Cotton Organic Matter Based on Soil Water Removal Algorithm. Spectrosc. Spectr. Anal. 2022, 42, 222–228. [Google Scholar]
- Zhang, Z.; Ding, J.; Wang, J. Spectral Characteristics of Oasis Soil in Arid Area Based on Harmonic Analysis Algorithm. Acta Opt. Sin. 2019, 39, 0228003. [Google Scholar] [CrossRef]
- Bo, K.; Yu, H.; Du, R. Quantitative estimation of biomass of alpine grasslands using hyperspectral remote sensing—Sciencedirect. Rangel. Ecol. Manag. 2019, 72, 336–346. [Google Scholar]
- Krishnan, P.; Alexander, J.D.; Butler, B.J.; Hummel, J.W. Reflectance Technique for Predicting Soil Organic Matter. Soil Sci. Soc. Am. J. 1980, 44, 1282–1285. [Google Scholar] [CrossRef]
- VAN Waes, C.; Mestdagh, I.; Lootens, P.; Carlier, L. Possibilities of near infrared reflectance spectroscopy for the prediction of organic carbon concentrations in grassland soils. J. Agric. Sci. 2005, 143, 487–492. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.; Bellon-Maurel, V.; Roger, J.-M.; Gobrecht, A.; Ferrand, L.; Joalland, S. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma 2011, 167–168, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Zhang, Z.; Wang, H.; Wang, J.; Yang, S. Assessing Soil Organic Matter Content in a Coal Mining Area through Spectral Variables of Different Numbers of Dimensions. Sensors 2020, 20, 1795. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Yang, F.; Yang, L.; Zheng, Y.; Wang, H.; Chen, W.; Li, Y. Spatial prediction modeling of soil organic matter content based on principal components and machine learning. Arid Land Geogr. 2021, 44, 1114–1124. [Google Scholar]
- Hong, Y.; Shen, R.; Cheng, H.; Chen, S.; Chen, Y.; Guo, L.; He, J.; Liu, Y.; Yu, L.; Liu, Y. Cadmium concentration estimation in peri-urban agricultural soils: Using reflectance spectroscopy, soil auxiliary information, or a combination of both? Geoderma 2019, 354, 113875. [Google Scholar] [CrossRef]
- Radim, V.; Radka, K.; Luboš, B.; Ondřej, J.; Aleš, K.; Lukáš, B. Combining reflectance spec-troscopy and the digital elevation model for soil oxidizable carbon estimation. Geoderma 2017, 303, 133–142. [Google Scholar]
- Ma, G.; Ding, J.; Zhang, Z. Soil Organic Matter Content Estimation Based on Soil Covariate and VIS-NIR Spec-troscopy. Laser Optoelectron. Prog. 2020, 57, 265–275. [Google Scholar]
- Wold, S.; Sjostrom, M.; Eriksson, L. PL.S-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Dx, A.; Sc, B.; Ravr, C. X-ray fluorescence and visible near infrared sensor fusion for predicting soil chromium content. Geoderma 2019, 352, 61–69. [Google Scholar]
- Zhang, Z.; Ding, J.; Zhu, C.; Chen, X.; Wang, J.; Han, L.; Ma, X.; Xu, D. Bivariate empirical mode decomposition of the spatial variation in the soil organic matter content: A case study from NW China. CATENA 2021, 206, 105572. [Google Scholar] [CrossRef]
- He, B.; Ding, J.; Liu, B.; Wang, J. Spatiotemporal Variation of Soil Salinization in Weigan-Kuqa River Delta Oasis. Sci. Silvae Sin. 2019, 55, 185–196. [Google Scholar]
- Jin, X.; Du, J.; Liu, H.; Wang, Z.; Song, K. Remote estimation of soil organic matter content in the Sanjiang Plain, Northest China: The optimal band algorithm versus the GRA-ANN model. Agric. For. Meteorol. 2016. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Yao, Y.; Ding, J.; Zhang, F.; Zhao, Z.; Jiang, H. Research on Model of Soil Salinization Monitoring Based on Hyperspectral lndex and EM38. Spectrosc. Spectr. Anal. 2013, 33. [Google Scholar] [CrossRef]
- Cloutis, E.A. Review Article Hyperspectral geological remote sensing: Evaluation of analytical techniques. Int. J. Remote Sens. 1996, 17, 2215–2242. [Google Scholar] [CrossRef]
- Tibshirani, R.; Hastie, W.T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. B 2001, 63, 411–423. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.; Qi, H.; Fang, H. PLSR-Based hyperspectral remote sensing retrieval of soil salinity of ChaKa-GongHe basin in QingHai province. Acta Pedol. Sin. 2010, 47, 1255–1263. [Google Scholar]
- Wijewardane, N.K.; Ge, Y.; Morgan, C.S.L. Moisture insensitive prediction of soil properties from VNIR reflectance spectra based on external parameter orthogonalization. Geoderma. 2016, 267, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y. Response of Plant Diversity to Aridity Andsalinity Stress in Ebinur Lake Basin; Xinjiang University: Urumqi, China, 2019. [Google Scholar]
- Zhang, Z.; Ding, J.; Zhu, C.; Wang, J.; Ma, G.; Ge, X.; Han, L. Strategies for the efficient estimation of soil organic matter in salt-affected soils through Vis-NIR spectroscopy: Optimal band combination algorithm and spectral degrada-tion. Geoderma 2021, 382, 114729. [Google Scholar] [CrossRef]
- Cheng, H.; Shen, R.; Chen, Y.; Wan, Q.; Shi, T.; Wang, J.; Wan, Y.; Hong, Y.; Li, X. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma 2019, 336, 59–67. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Q.; Peng, J.; Ji, W.; Liu, H.; Li, X.; Rossel, R.A.V. Classification of hyperspectral reflectance properties and organic matter spectral prediction model for major soils in China. Sci. Sin. 2014, 57, 1671–1680. [Google Scholar]
- Viscarra Rossel, R.A.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Moura-Bueno, J.M.; Dalmolin Ricardo, S.D.; Horst-Heinen, T.Z.; Grunwald, S.; ten Caten, A. Environmental covariates improve the spectral predictions of organic carbon in subtropical soils in southern Brazil. Geoderma 2021, 393, 114981. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Bellinaso, H.; Araújo, S.R.; Rizzo, R.; Souza, A.B. Spectral regionalization of tropical soils in the estimation of soil attributes. Rev. Ciência Agronômica 2016, 47, 589. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, J.; Wang, J.; Ge, X. Prediction of soil organic matter in northwestern China using fractional-order derivative spectroscopy and modified normalized difference indices. CATENA 2020, 185, 104257. [Google Scholar] [CrossRef]
- Boddey, R.M.; Jantalia, C.P.; Conceição, P.C.; Zanatta, J.A.; Bayer, C.; Mielniczuk, J.; Dieckow, J.; DOS Santos, H.P.; Denardin, J.E.; Aita, C.; et al. Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture. Glob. Chang. Biol. 2010, 16, 784–795. [Google Scholar] [CrossRef]
- Morgan, C.L.; Waiser, T.H.; Brown, D.J.; Hallmark, C.T. Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy. Geoderma 2009, 151, 249–256. [Google Scholar] [CrossRef]
- Baumgardner, M.F.; Silva, L.F.; Biehl, L.L.; Stoner, E.R. Reflectance Properties of Soils. Adv. Agron. 1986, 38, 1–44. [Google Scholar] [CrossRef]
- Dalal, R.C.; Henry, R.J. Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflec-tance spectrophotometry. Soil Sci. Soc. Am. J. 1986, 50, 120–123. [Google Scholar] [CrossRef]
- Morra, M.J.; Hall, M.H.; Freeborn, L.L. Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spec-troscopy. Soil Sci. Soc. Am. J. 1991, 55, 288–291. [Google Scholar] [CrossRef]
- Fidêncio, P.H.; Poppi, R.J.; de Andrade, J.C. Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy. Anal. Chim. Acta 2002, 453, 125–134. [Google Scholar] [CrossRef]
- Vasques, G.; Grunwald, S.; Sickman, J. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 2008, 146, 14–25. [Google Scholar] [CrossRef]
- Zhao, Q.; Ge, X.; Ding, J.; Wang, J.; Zhang, Z.; Tian, M. Combination of Fractional Order Differential and Machine Learning Algorithm for Spectral Estimation of Soil Organic Carbon Content. Laser Optoelectron. Prog. 2020, 57, 153001. [Google Scholar] [CrossRef]
- O’Rourke, S.M.; Stockmann, U.; Holden, N.M.; McBratney, A.B.; Minasny, B. An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties. Geoderma 2016, 279, 31–44. [Google Scholar] [CrossRef]
- Mulder, V.; Lacoste, M.; Richer-De-Forges, A.; Martin, M.; Arrouays, D. National versus global modelling the 3D distribution of soil organic carbon in mainland France. Geoderma 2016, 263, 16–34. [Google Scholar] [CrossRef]
Environmental Variables | Vis-NIR Spectroscopy | Spectral Classification |
---|---|---|
Land-use/land-cover (LULC) | Vis-NIR | SC1 |
Digital elevation model (DEM) | SC2 | |
World Reference Base for Soil Resources (WRB) | SC3 | |
Soil texture | ||
Soil salinity |
Models | Input Variables |
---|---|
Model 1 | Vis-NIR |
Model 2 | Vis-NIR, Spectral classification |
Model 3 | DEM, LULC, WRB, Soil salinity, Soil texture |
Model 4 | Vis-NIR, Spectral classification, DEM, LULC, WRB, Soil salinity, Soil texture |
Attributes | Sample Sets | Na | Min | Max | Median | Mean | SD b | CV c (%) |
---|---|---|---|---|---|---|---|---|
SOM (g kg−1) | Entire a | 249 | 0.31 | 31.70 | 10.88 | 11.87 | 7.28 | 61.47% |
Calibration | 168 | 0.31 | 31.06 | 11.08 | 11.90 | 7.42 | 62.32% | |
Validation | 83 | 1.07 | 31.70 | 10.82 | 11.80 | 6.99 | 59.24% | |
Salinity (dS m−1) | Entire | 249 | 0.10 | 67.09 | 12.29 | 13.90 | 13.57 | 97.63% |
Models | Lv a | R2 | RMSE b | RPIQ c |
---|---|---|---|---|
Model 1 | 7 | 0.76 | 4.30 | 2.10 |
Model 2 | 8 | 0.78 | 4.21 | 2.14 |
Model 3 | 1 | 0.39 | 4.29 | 2.10 |
Model 4 | 13 | 0.85 | 3.85 | 2.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Ding, J.; Zhang, Z. Estimation of Soil Organic Matter in Arid Zones with Coupled Environmental Variables and Spectral Features. Sensors 2022, 22, 1194. https://doi.org/10.3390/s22031194
Wang Z, Ding J, Zhang Z. Estimation of Soil Organic Matter in Arid Zones with Coupled Environmental Variables and Spectral Features. Sensors. 2022; 22(3):1194. https://doi.org/10.3390/s22031194
Chicago/Turabian StyleWang, Zheng, Jianli Ding, and Zipeng Zhang. 2022. "Estimation of Soil Organic Matter in Arid Zones with Coupled Environmental Variables and Spectral Features" Sensors 22, no. 3: 1194. https://doi.org/10.3390/s22031194