ARACAM: A RGB-D Multi-View Photogrammetry System for Lower Limb 3D Reconstruction Applications
Abstract
:1. Introduction
State of the Art
2. Materials and Methods
2.1. Capture System: ARACAM
2.1.1. Resolution
2.1.2. Mechanical Design
2.2. Calibration
2.3. Segmentation
2.4. Reconstruction
2.5. Validation
- Segmentation comparison of a manual segmentation using image editing software (ground truth) vs. the use of the proposed algorithms.
- Comparison of a CT model (ground truth) vs. the scan with the proposed system.
- Diameter measurement verification with 4 plaster cast molds.
- Participant use demonstration with skin deformation.
3. Results & Discussion
3.1. ARACAM
3.2. Segmentation Results
3.3. 3D Reconstruction Performance Evaluation
3.4. Plaster Mold Diameters Measurements
3.5. Participant Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sexton, A.T.; Fleming, L.L. Lower Extremity Amputation. In Medical Management of the Surgical Patient: A Textbook of Perioperative Medicine; Cambridge University Press: Cambridge, UK, 2021; pp. 741–743. [Google Scholar] [CrossRef]
- Vázquez, E. Los Amputados y su Rehabilitación; Technical Report; Academia Nacional de Medicina de México: Mexico City, Mexico, 2016. [Google Scholar]
- Kumar, P.K.; Charan, M.; Kanagaraj, S. Trends and Challenges in Lower Limb Prosthesis. IEEE Potentials 2017, 36, 19–23. [Google Scholar] [CrossRef]
- Shuxian, Z.; Wanhua, Z.; Bingheng, L. 3D reconstruction of the structure of a residual limb for customising the design of a prosthetic socket. Med. Eng. Phys. 2005, 27, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Sengeh, D.M.; Moerman, K.M.; Petron, A.; Herr, H. Multi-material 3-D viscoelastic model of a transtibial residuum from in-vivo indentation and MRI data. J. Mech. Behav. Biomed. Mater. 2016, 59, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Colombo, G.; Filippi, S.; Rizzi, C.; Rotini, F. A new design paradigm for the development of custom-fit soft sockets for lower limb prostheses. Comput. Ind. 2010, 61, 513–523. [Google Scholar] [CrossRef]
- Wang, Q.; Tan, Y.; Mei, Z. Computational Methods of Acquisition and Processing of 3D Point Cloud Data for Construction Applications. Arch. Comput. Methods Eng. 2020, 27, 479–499. [Google Scholar] [CrossRef]
- Bonacini, D.; Corradini, C.; Magrassi, G. 3D Digital Models Reconstruction: Residual Limb Analysis To Improve Prosthesis Design. In Body Modelling and Crime Scene Investigations; 2002; pp. 96–103. Available online: https://www.researchgate.net/publication/242252103_3D_DIGITAL_MODELS_RECONSTRUCTION_RESIDUAL_LIMB_ANALYSIS_TO_IMPROVE_PROSTHESIS_DESIGN/citations (accessed on 3 February 2022).
- Barreto, M.A.; Huegel, J.C.; Fuentes, R.Q.; Perez, J. Non-static object reconstruction system based on multiple RGB-D cameras. In Proceedings of the Twelfth International Conference on Machine Vision (ICMV 2019), Amsterdam, The Netherlands, 16–18 November 2019; Osten, W., Nikolaev, D.P., Eds.; SPIE: Bellingham, WA, USA, 2020; Volume 11433, p. 4. [Google Scholar] [CrossRef]
- Perez-Gonzalez, J.; Carillo-Bermejo, A.; Hevia-Montiel, N.; Huegel, J.C. Retraining random forest algorithm for lower limb prosthesis tracking using an RGB-D camera. In Proceedings of the 15th International Symposium on Medical Information Processing and Analysis, Medellín, Colombia, 6–8 November 2019; Romero, E., Lepore, N., Brieva, J., Eds.; International Society for Optics and Photonics. SPIE: Bellingham, WA, USA, 2020; Volume 11330, pp. 279–285. [Google Scholar] [CrossRef]
- Bahadori, S.; Immins, T.; Wainwright, T.W. Volumetric assessment of lower limb oedema using 3D laser scanning technique: A systematic review. J. Med. Eng. Technol. 2022, 46, 40–45. [Google Scholar] [CrossRef]
- Riel, S.V. Exploring the Use of 3D GIS as an Analytical Tool in Archaeological Excavation Practice. Master’s Thesis, Lund University, Lund, Switzerland, 2016. [Google Scholar] [CrossRef]
- Taqriban, R.B.; Ismail, R.; Ariyanto, M.; Putra, A.F.Y.S. 3D Model of Photogrammetry Technique for Transtibial Prosthetic Socket Design Development. In Proceedings of the 2nd International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2019, Yogyakarta, Indonesia, 5–6 December 2019; pp. 456–461. [Google Scholar] [CrossRef]
- Wu, G.; Li, D.; Hu, P.; Zhong, Y.; Pan, N. Automatic foot scanning and measurement based on multiple RGB-depth cameras. Text. Res. J. 2018, 88, 167–181. [Google Scholar] [CrossRef]
- Solav, D.; Moerman, K.M.; Jaeger, A.M.; Genovese, K.; Herr, H.M. MultiDIC: An open-source toolbox for multi-view 3D digital image correlation. IEEE Access 2018, 6, 30520–30535. [Google Scholar] [CrossRef]
- Cullen, S.; Mackay, R.; Mohagheghi, A.; Du, X. The Use of Smartphone Photogrammetry to Digitise Transtibial Sockets: Optimisation of Method and Quantitative Evaluation of Suitability. Sensors 2021, 21, 8405. [Google Scholar] [CrossRef]
- Sobani, S.S.M.; Mahmood, N.H.; Zakaria, N.A.; Razak, M.A.A. 3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform. IOP Conf. Ser. Mater. Sci. Eng. 2018, 341, 012003. [Google Scholar] [CrossRef] [Green Version]
- Ballit, A.; Mougharbel, I.; Ghaziri, H.; Dao, T.T. Visual Sensor Fusion With Error Compensation Strategy Toward a Rapid and Low-Cost 3D Scanning System for the Lower Residual Limb. IEEE Sens. J. 2020, 20, 15043–15052. [Google Scholar] [CrossRef]
- Intel Corporation. Intel®RealSense-Product Family D400 Series: Datasheet; Intel Corporation: Santa Clara, CA, USA, 2020; pp. 1–121. Available online: https://www.intelrealsense.com/wp-content/uploads/2020/06/Intel-RealSense-D400-Series-Datasheet-June-2020.pdf (accessed on 13 June 2020).
- Intel Corporation. Intel RealSense SDK 2.0 [Source Code]; Intel Corporation: Santa Clara, CA, USA, 2017; Available online: https://github.com/IntelRealSense/librealsense (accessed on 10 September 2021).
- Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. Sect. A 1976, 32, 922–923. [Google Scholar] [CrossRef]
- Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools Prof. Programm. 2000, 25, 120–123. [Google Scholar]
- van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. The Scikit-Image Contributors. Scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef] [PubMed]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Shreeyak. Create_pointCloud.py [Code]. 2019. Available online: https://gist.github.com/Shreeyak/9a4948891541cb32b501d058db227fff (accessed on 10 September 2021).
- Zhou, Q.Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018, arXiv:1801.09847. [Google Scholar]
- Dennis, B.S.; Solís, M.; Aranda, B.S.H. Registro de Nubes de Puntos 2D: Comparación entre Métodos Iterativos y una Red Neuronal Artificial. Rev. Aristas 2021, 8, 301–305. [Google Scholar]
- Kazhdan, M.; Hoppe, H. Screened poisson surface reconstruction. ACM Trans. Graph. 2013, 32, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Attene, M. A lightweight approach to repairing digitized polygon meshes. Vis. Comput. 2010, 26, 1393–1406. [Google Scholar] [CrossRef]
- Alkaios, B. HP MJF vs SLS: A 3D Printing Technology Comparison. 2013. Available online: https://www.hubs.com/knowledge-base/hp-mjf-vs-sls-3d-printing-technology-comparison/#what (accessed on 16 November 2021).
- Carfagni, M.; Furferi, R.; Governi, L.; Servi, M.; Uccheddu, F.; Volpe, Y. On the Performance of the Intel {SR}300 Depth Camera: Metrological and Critical Characterization. IEEE Sens. J. 2017, 17, 4508–4519. [Google Scholar] [CrossRef] [Green Version]
- Aguila, S.I.; Sánchez, G.J.; Sauvain, E.E.; Alemon, B.; Fuentes-Aguilar, R.Q.; Huegel, J.C. Interface pressure system to compare the functional performance of prosthetic sockets during the gait in people with trans-tibial amputation. Sensors 2020, 20, 7043. [Google Scholar] [CrossRef] [PubMed]
- Lenz, A.L.; Bush, T.R. Evaluating shear and normal force with the use of an instrumented transtibial socket: A case study. Med. Eng. Phys. 2019, 71, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Wai-Chi Wong, D.; Zhang, M.; Kam-Lun Leung, A. Analysis of compression/release stabilized transfemoral prosthetic socket by finite element modelling method. Med. Eng. Phys. 2020, 83, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Ballit, A.; Mougharbel, I.; Ghaziri, H.; Dao, T.T. Fast Soft Tissue Deformation and Stump-Socket Interaction Toward a Computer-Aided Design System for Lower Limb Prostheses. IRBM 2020, 41, 276–285. [Google Scholar] [CrossRef]
- Sewell, P.; Noroozi, S.; Vinney, J.; Amali, R.; Andrews, S. Static and dynamic pressure prediction for prosthetic socket fitting assessment utilising an inverse problem approach. Artif. Intell. Med. 2012, 54, 29–41. [Google Scholar] [CrossRef]
- Faustini, M.C.; Neptune, R.R.; Crawford, R.H. The quasi-static response of compliant prosthetic sockets for transtibial amputees using finite element methods. Med. Eng. Phys. 2006, 28, 114–121. [Google Scholar] [CrossRef]
Type | Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | IQR | RMS |
---|---|---|---|---|---|---|---|---|
DC (%) | 0.47 | 0.80 | 0.98 | 0.87 | 0.99 | 0.99 | 0.19 | 0.89 |
HD (px) | 7.21 | 13.17 | 15.97 | 26.67 | 22.68 | 138.76 | 9.51 | 40.30 |
HD (mm) | 1.73 | 3.16 | 3.83 | 6.40 | 5.44 | 33.30 | 2.28 | 9.67 |
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | IQR | RMS |
---|---|---|---|---|---|---|---|
0.00 | 0.59 | 1.27 | 1.93 | 2.64 | 10.72 | 2.06 | 2.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreto, M.A.; Perez-Gonzalez, J.; Herr, H.M.; Huegel, J.C. ARACAM: A RGB-D Multi-View Photogrammetry System for Lower Limb 3D Reconstruction Applications. Sensors 2022, 22, 2443. https://doi.org/10.3390/s22072443
Barreto MA, Perez-Gonzalez J, Herr HM, Huegel JC. ARACAM: A RGB-D Multi-View Photogrammetry System for Lower Limb 3D Reconstruction Applications. Sensors. 2022; 22(7):2443. https://doi.org/10.3390/s22072443
Chicago/Turabian StyleBarreto, Marco A., Jorge Perez-Gonzalez, Hugh M. Herr, and Joel C. Huegel. 2022. "ARACAM: A RGB-D Multi-View Photogrammetry System for Lower Limb 3D Reconstruction Applications" Sensors 22, no. 7: 2443. https://doi.org/10.3390/s22072443
APA StyleBarreto, M. A., Perez-Gonzalez, J., Herr, H. M., & Huegel, J. C. (2022). ARACAM: A RGB-D Multi-View Photogrammetry System for Lower Limb 3D Reconstruction Applications. Sensors, 22(7), 2443. https://doi.org/10.3390/s22072443