Low-Dimensional Palladium on Graphite-on-Paper Substrate for Hydrogen Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Fabrication
2.2. Sensor Measurements
3. Results and Discussion
3.1. Characterization of Pd Thin Film
3.2. Electrical Properties of the GOP Substrate
3.3. Discontinuity Issue in the 8 nm Pd/Paper and Graphite Intermediate Layer Solution
3.4. Sensor Performance of Pd Film on GOP and NPP Substrates at Room Temperature
3.5. Temperature and Thickness Effect for Pd on GOP
3.6. Suppression of Heating-Induced Loss Gas Response
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, X.Q.; Wang, Y.L.; Deng, H.; Latimer, M.L.; Xiao, Z.L.; Pearson, J.; Xu, T.; Wang, H.H.; Welp, U.; Crabtree, G.W.; et al. Networks of ultrasmall Pd/Cr nanowires as high performance hydrogen sensors. ACS Nano 2011, 5, 7443–7452. [Google Scholar] [CrossRef] [PubMed]
- Görgün, H.; Arcak, M.; Varigonda, S.; Bortoff, S.A. Observer designs for fuel processing reactors in fuel cell power systems. Int. J. Hydrogen Energy 2005, 30, 447–457. [Google Scholar] [CrossRef]
- Lim, S.H.; Radha, B.; Chan, J.Y.; Saifullah, M.S.M.; Kulkarni, G.U.; Ho, G.W. Flexible palladium-based H2 sensor with fast response and low leakage detection by nanoimprint lithography. ACS Appl. Mater. Interfaces 2013, 5, 7274–7281. [Google Scholar] [CrossRef] [PubMed]
- Buttner, W.J.; Post, M.B.; Burfess, R.; Rivkin, C. An overview of hydrogen safety sensors and requirements. Int. J. Hydrogen Energy 2011, 36, 2462–2470. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, L.F.; Yang, Y.H.; Xu, N.S.; Yang, G.W. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J. Phys. Chem. C 2008, 112, 6643–6647. [Google Scholar] [CrossRef]
- Song, H.; Lou, Z.; Liu, M.; Zhang, G.; Peng, W.; Wang, B.; Zhu, Y. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas. Sensors 2018, 18, 1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Zhu, Y.; Chen, Y.P.; Song, H.; Huang, P.C.; Dao, D.V. Hydrogen sensor based on palladium-yttrium alloy nanosheet. Mater. Chem. Phys. 2017, 194, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Rahman, M.A.; Nara, Y.; Hashishin, T.; Dao, D.V.; Zhu, Y. Palladium microfiber network as platform for hydrogen sensing applications. J. Phys. Chem. Solids 2019, 131, 50–54. [Google Scholar] [CrossRef]
- Zeng, X.Q.; Latimer, M.L.; Xiao, Z.L.; Panuganti, S.; Welp, U.; Kwok, W.K.; Xu, T. Hydrogen Gas Sensing with networks of ultrasmall palladium nanowires formed on filtration membranes. Nano Lett. 2011, 11, 262–268. [Google Scholar] [CrossRef]
- Walter, E.C.; Favier, F.; Penner, R.M. Palladium mesowire arrays for fast hydrogen sensors and hydrogen-Actuated Switches. Anal. Chem. 2002, 74, 1546–4553. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Kim, J.S. Hydrogen sensor using the Pd film supported on anodic aluminium oxide. Int. J. Hydrogen Energy 2014, 39, 16500–16505. [Google Scholar] [CrossRef]
- Offermans, P.; Tong, H.D.; Rijn, C.J.M.V.; Merken, P.; Brongersma, S.H.; Crego-Calama, M. Ultralow-power hydrogen sensing with single palladium nanowires. Appl. Phys. Lett. 2009, 94, 223110. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Hemminger, J.C.; Penner, R.M. Catalytically activated palladium@platinum nanowires for accelerated hydrogen gas detection. ACS Nano 2015, 9, 3215–3225. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B 2009, 140, 319–336. [Google Scholar] [CrossRef]
- Wang, B.; Nara, Y.; Hashishin, T.; Dao, D.V.; Zhu, Y. Palladium on paper as a low-cost and flexible material for fast hydrogen sensing. J. Mater. Sci. Mater. Electron. 2020, 31, 5298–5304. [Google Scholar] [CrossRef]
- Buerschaper, R.A. Thermal and electrical conductivity of graphite and carbon at low temperatures. J. Appl. Phys. 1944, 15, 452–454. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Hashishin, T.; Dao, D.V.; Zhu, Y. Low-Dimensional Palladium on Graphite-on-Paper Substrate for Hydrogen Sensing. Sensors 2022, 22, 3926. https://doi.org/10.3390/s22103926
Wang B, Hashishin T, Dao DV, Zhu Y. Low-Dimensional Palladium on Graphite-on-Paper Substrate for Hydrogen Sensing. Sensors. 2022; 22(10):3926. https://doi.org/10.3390/s22103926
Chicago/Turabian StyleWang, Boyi, Takeshi Hashishin, Dzung Viet Dao, and Yong Zhu. 2022. "Low-Dimensional Palladium on Graphite-on-Paper Substrate for Hydrogen Sensing" Sensors 22, no. 10: 3926. https://doi.org/10.3390/s22103926