A Single Subject, Feasibility Study of Using a Non-Contact Measurement to “Visualize” Temperature at Body-Seat Interface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Experimental Design
2.3. Temperature Sensors
2.3.1. Sensor Description
2.3.2. Data Acquisition and Transmission
2.3.3. Sensor Performance Evaluation
2.3.4. Sensor Positioning
2.4. Foam Cushions
2.4.1. Description
2.4.2. Cushion Selection
2.5. Data Processing and Analysis
2.5.1. Pre-Processing
- (a)
- Identification of all of the maxima and minima in the original signal;
- (b)
- Interpolate the maxima and minima using a cubic spline function and form upper/lower envelopes. Then divide the summation of the upper and the lower envelopes by two to get the averaged envelope;
- (c)
- Subtract the averaged envelope from the signal and iterate until the averaged envelope approximates to zero. Eventually, a series of intrinsic mode functions (IMFs) and a residue are achieved;
- (d)
2.5.2. Statistical Analysis
2.5.3. Prediction Model
2.5.4. Prediction Evaluation
3. Results
3.1. Verification of the Sensor Accuracy and Reliability: Ascending/Descending Temperature Challenge Performed in the Controlled Temperature Chamber
3.2. Temperature Data Pre-Processing: Application of EMD-FSI Filter
3.3. Body-Seat Interface Temperature Estimation: The Relationship between DCTM and NCTM
4. Discussion
4.1. IRs Performance
4.2. Noise Suppression Algorithm
4.3. Impact Factors on Temperature Estimation
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sales, R.B.C.; Pereira, R.R.; Aguilar, M.T.P.; Cardoso, A.V. Thermal comfort of seats as visualized by infrared thermography. Appl. Ergon. 2017, 62, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Mastrigt, S.H.; Groenesteijn, L.; Vink PKuijt-Evers, L.M. Predicting passenger seat comfort and discomfort on the basis of human, context and seat characteristics: A literature review. Ergonomics 2017, 60, 889–911. [Google Scholar] [CrossRef] [PubMed]
- Grooten, W.J.; Äng, B.O.; Hagströmer, M.; Conradsson, D.; Nero, H.; Franzén, E. Does a dynamic chair increase office workers’ movements? Results from a combined laboratory and field study. Appl. Ergon. 2017, 60, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shanley, E.; Patton, D.; Avsar, P.; O’Connor, T.; Nugent, L.; Moore, Z. The impact of the Shanley Pressure Ulcer Prevention Programme on older persons’ knowledge of, and attitudes and behaviours towards, pressure ulcer prevention. Int. Wound J. 2022, 19, 754–764. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, Y.; Liu, M.; Cascioli, V.; McCarthy, P.W. Investigating thermal performance of different chairs at the user-seat interface by a temperature sensor array system while participants perform office work. J. Tissue Viability 2018, 27, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cascioli, V.; Heusch, A.; McCarthy, P.W. Studying thermal characteristics of seating materials by recording temperature from 3 positions at the seat-subject interface. J. Tissue Viability 2011, 20, 73–80. [Google Scholar] [CrossRef]
- Mansur, R.; Peko, L.; Shabshin, N.; Cherbinski, L.; Neeman, Z.; Gefen, A. Ultrasound elastography reveals the relation between body posture and soft-tissue stiffness which is relevant to the etiology of sitting-acquired pressure ulcers. Physiol. Meas. 2020, 41, 124002. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Mcfarlane, M.; Bennett, S.; Wallace, B.; Goubran, R.; Knoefel, F. Bed-Based Health monitoring using pressure sensitive technology: A review. IEEE Instrum. Meas. Mag. 2021, 24, 13–23. [Google Scholar] [CrossRef]
- Yang, T.D.; Jan, Y.K. Nonnegative matrix factorization for the identification of pressure ulcer risks from seating interface pressures in people with spinal cord injury. Med. Biol. Eng. Comput. 2020, 58, 227–237. [Google Scholar] [CrossRef]
- Liu, Z.; Cascioli, V.; McCarthy, P.W. Review of measuring microenvironmental changes at the body–seat interface and the relationship between object measurement and subjective evaluation. Sensors 2020, 20, 6715. [Google Scholar] [CrossRef]
- Gill, K.; Jakubik, J.; Kups, M.; Rosiak-Gill, A.; Kurzawa, R.; Kurpisz, M.; Fraczek, M.; Piasecka, M. The impact of sedentary work on sperm nuclear DNA integrity. Folia Histochem. Et Cytobiol. 2019, 57, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Jurewicz, J.; Radwan, M.; Sobala, W.; Radwan, P.; Bochenek, M.; Hanke, W. Effects of occupational exposure—Is there a link between exposure based on an occupational questionnaire and semen quality? Syst. Biol. Reprod. Med. 2014, 60, 227–233. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, P.W.; Liu, Z.; Heusch, A.; Cascioli, V. Assessment of humidity and temperature sensors and their application to seating. J. Med. Eng. Tech. 2009, 33, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Pron, H.; Taiar, R.; Bui, H.T.; Lestriez, P.; Polidori, G. Infrared thermography applied to the study of the thermal behavior of wheelchair cushion. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 167–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemp, R.; Taylor, W.R.; Lorenzetti, S. Are pressure measurements effective in the assessment of office chair comfort/discomfort? A review. Appl. Ergon. 2015, 48, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, T.G.; Babalik, F.C. The effects of ramie blended car seat covers on thermal comfort during road trials. Int. J. Ind. Ergon. 2009, 39, 287–294. [Google Scholar] [CrossRef]
- Stephens, M.; Bartley, C. Understanding the association between pressure ulcers and sitting in adults what does it mean for me and my carers? Seating guidelines for people, carers and health & social care professionals. J. Tissue Viability 2018, 27, 59–73. [Google Scholar]
- Cascioli, V.; Liu, Z.; Heusch, A.; McCarthy, P.W. A methodology using in-chair movements as an objective measure of discomfort for the purpose of statistically distinguishing between similar seat surfaces. Appl Ergon. 2016, 54, 100–109. [Google Scholar] [CrossRef]
- Liu, Z.; Chang, L.; Luo, Z.; Cascioli, V.; Heusch, A.I.; McCarthy, P.W. Design and development of a thermal imaging system based on a temperature sensor array for temperature measurements of enclosed surfaces and its use at the body-seat interface. Measurement 2017, 104, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Yip, J.; Ng, S.P. Study of three-dimensional spacer fabrics: Physical and mechanical properties. J. Mater. Processing Technol. 2008, 206, 359–364. [Google Scholar] [CrossRef]
- Arumugam, V.; Mishra, R.; Militky, J.; Kremenakova, D.; Tomkova, B.; Venkataraman, M. Thermo-physiological properties of 3D warp knitted spacer fabrics for car seat application. Indian J. Fibre Text. Tes. 2019, 44, 475–485. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 460, 1597–1611. [Google Scholar] [CrossRef]
- Flandrin, P.; Rilling, G.; Goncalves, P. Empirical Mode Decomposition as a Filter Bank. IEEE Signal. Processing Lett. 2004, 11, 112–114. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yang, S.; Zheng, F.; Cai, S.; Lu, M.; Wu, M. Removal of artifacts in knee joint vibroarthrographic signals using ensemble empirical mode decomposition and detrended fluctuation analysis. Physiol. Meas. 2014, 35, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Athavale, A.; Yoda, M.; Joshi, Y. Comparison of data driven modeling approaches for temperature prediction in data centers. Int. J. Heat Mass Transf. 2019, 135, 1039–1052. [Google Scholar] [CrossRef]
- Mehdizadeh, S. Assessing the potential of data-driven models for estimation of long-term monthly temperatures. Comput. Electron. Agric. 2018, 144, 114–125. [Google Scholar] [CrossRef]
- Smith, J.S.; Wu, B.; Wilamowski, B.M. neural network training with Levenberg–Marquardt and adaptable weight compression. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 580–587. [Google Scholar] [CrossRef]
- Cui, P. Simultaneous determination of thickness, thermal conductivity and porosity in textile material design. J. Inverse Ill.-Posed Probl. 2016, 24, 59–66. [Google Scholar] [CrossRef]
- Xing, D.M.; Li, N.P. Numerical prediction of mean radiant temperature in radiant cooling indoor environments. J. Therm. Sci. 2022, 31, 359–369. [Google Scholar] [CrossRef]
- Lee, H.; Jo, S.; Park, S. A simple technique for the traditional method to estimate mean radiant temperature. Int. J. Biometeorol. 2022, 6, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Stockton, L.; Rithalia, S. Pressure-reducing cushions: Perceptions of comfort from the wheelchair users’ perspective using interface pressure, temperature and humidity measurements. J. Tissue Viability 2009, 18, 28–35. [Google Scholar] [CrossRef] [PubMed]
Methods | Tools | Advantage | Disadvantage |
---|---|---|---|
Subjective | Questionnaires [15] | Straight-forward implementation | Requires a large number of populations and liable to be influenced by subjective factors (e.g., mood and aesthetics). |
Objective | Temperature probes [5,6,13] | Continuous and real-time measurement | Damage to the integrity of the cushion by embedding probes or perceptible if attached to the body. |
Thermography [1,14] | Whole seat thermal information | Measure discontinuously and require sitters to stand for thermal images acquisition |
Thickness (cm) | Low Density Foam | Intermediate Density Foam | ||||
---|---|---|---|---|---|---|
RMSE (°C) | MAE (°C) | NSE | RMSE (°C) | MAE (°C) | NSE | |
0.5 | 0.06 | 0.04 | 0.9943 | 0.05 | 0.04 | 0.9995 |
1.0 | 0.06 | 0.04 | 0.9952 | 0.07 | 0.05 | 0.9990 |
1.5 | 0.06 | 0.04 | 0.9974 | 0.07 | 0.05 | 0.9984 |
2.0 | 0.05 | 0.03 | 0.9982 | 0.06 | 0.04 | 0.9989 |
2.5 | 0.06 | 0.04 | 0.9914 | 0.10 | 0.06 | 0.9969 |
3.0 | 0.07 | 0.05 | 0.9950 | 0.10 | 0.06 | 0.9971 |
3.5 | 0.05 | 0.03 | 0.9919 | 0.06 | 0.04 | 0.9987 |
4.0 | 0.05 | 0.03 | 0.9938 | 0.10 | 0.06 | 0.9974 |
4.5 | 0.04 | 0.03 | 0.9961 | 0.07 | 0.05 | 0.9985 |
5.0 | 0.07 | 0.05 | 0.9927 | 0.11 | 0.06 | 0.9979 |
5.5 | 0.06 | 0.04 | 0.9932 | 0.08 | 0.05 | 0.9986 |
6.0 | 0.04 | 0.03 | 0.9961 | 0.10 | 0.06 | 0.9980 |
6.5 | 0.06 | 0.04 | 0.9869 | 0.10 | 0.06 | 0.9965 |
7.0 | 0.06 | 0.04 | 0.9945 | 0.12 | 0.07 | 0.9981 |
7.5 | 0.07 | 0.05 | 0.9970 | 0.14 | 0.08 | 0.9955 |
8.0 | 0.07 | 0.05 | 0.9985 | 0.16 | 0.09 | 0.9967 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Cascioli, V.; McCarthy, P.W. A Single Subject, Feasibility Study of Using a Non-Contact Measurement to “Visualize” Temperature at Body-Seat Interface. Sensors 2022, 22, 3941. https://doi.org/10.3390/s22103941
Liu Z, Cascioli V, McCarthy PW. A Single Subject, Feasibility Study of Using a Non-Contact Measurement to “Visualize” Temperature at Body-Seat Interface. Sensors. 2022; 22(10):3941. https://doi.org/10.3390/s22103941
Chicago/Turabian StyleLiu, Zhuofu, Vincenzo Cascioli, and Peter W. McCarthy. 2022. "A Single Subject, Feasibility Study of Using a Non-Contact Measurement to “Visualize” Temperature at Body-Seat Interface" Sensors 22, no. 10: 3941. https://doi.org/10.3390/s22103941