Dynamical Synergies of Multidigit Hand Prehension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.2. Preprocessing
2.3. Derivation of Dynamical Synergies
3. Results
3.1. Reconstruction Error Achieved Using the Dynamical Synergies
3.2. Reconstruction of Spatial Force Maps
4. Discussion
4.1. Significance of Dynamical Synergies
4.2. Influence of Load Forces and Task Configurations on the Dynamical Synergies
4.3. Biomechanical Constraints and Neural Control
4.4. Potential Applications in the Design and Control of Hand Exoskeletons
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cordella, F.; Ciancio, A.L.; Sacchetti, R.; Davalli, A.; Cutti, A.G.; Guglielmelli, E.; Zollo, L. Literature Review on Needs of Upper Limb Prosthesis Users. Front. Neurosci. 2016, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Brack, R.; Amalu, E.H. A review of technology, materials and R&D challenges of upper limb prosthesis for improved user suitability. J. Orthop. 2020, 23, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, N. The Co-Ordination and Regulation of Movements; Pergamon Press: Oxford, UK, 1967. [Google Scholar]
- Vinjamuri, R.; Sun, M.; Chang, C.; Lee, H.; Sclabassi, R.J. Dimensionality Reduction in Control and Coordination of the Human Hand. IEEE Trans. Biomed. Eng. 2010, 57, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Vinjamuri, R.; Mao, Z.; Sclabassi, R.J.; Diagnostics, C.; Sun, M. Time-Varying Synergies in Velocity Profiles of Finger Joints of the Hand during Reach and Grasp. In Proceedings of the 29th Annual International Conference of the IEEE EMBS, Lyon, France, 22–26 August 2007; pp. 4846–4849. [Google Scholar]
- Santello, M.; Flanders, M.; Soechting, J.F. Postural Hand Synergies for Tool Use. J. Neurosci. 1998, 18, 10105–10115. [Google Scholar] [CrossRef]
- Brown, C.Y.; Asada, H.H. Inter-Finger Coordination and Postural Synergies in Robot Hands via Mechanical Implementation of Principal Components Analysis. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 2877–2882. [Google Scholar]
- Starke, J.; Chatzilygeroudis, K.; Billard, A.; Asfour, T. On Force Synergies in Human Grasping Behavior. In Proceedings of the 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), Toronto, ON, Canada, 15–17 October 2019; pp. 72–78. [Google Scholar] [CrossRef]
- Zatsiorsky, V.M.; Latash, M.L. Prehension Synergies. Exerc. Sport Sci. Rev. 2004, 32, 75–80. [Google Scholar] [CrossRef]
- Weiss, E.J.; Flanders, M. Muscular and Postural Synergies of the Human Hand. J. Neurophysiol. 2004, 92, 523–535. [Google Scholar] [CrossRef]
- Prattichizzo, D.; Malvezzi, M.; Bicchi, A. On Motion and Force Control of Grasping Hands with Postural Synergies. Robot. Sci. Syst. 2011, 6, 49–56. [Google Scholar] [CrossRef]
- Burns, M.K.; Pei, D.; Vinjamuri, R. Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1351–1361. [Google Scholar] [CrossRef]
- Godfrey, S.B.; Ajoudani, A.; Catalano, M.; Grioli, G.; Bicchi, A. A Synergy-Driven Approach to a Myoelectric Hand. IEEE Int. Conf. Rehabil. Robot. 2013, 2013, 6650377. [Google Scholar] [CrossRef]
- Catalano, M.G.; Grioli, G.; Farnioli, E.; Serio, A.; Piazza, C.; Bicchi, A. Adaptive Synergies for the Design and Control of the Pisa/IIT SoftHand. Int. J. Robot. Res. 2014, 33, 768–782. [Google Scholar] [CrossRef] [Green Version]
- Ajoudani, A.; Godfrey, S.B.; Bianchi, M.; Catalano, M.G.; Grioli, G.; Tsagarakis, N.; Bicchi, A. Exploring Teleimpedance and Tactile Feedback for Intuitive Control of the Pisa/IIT SoftHand. IEEE Trans. Haptics 2014, 7, 203–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santello, M.; Bianchi, M.; Gabiccini, M.; Ricciardi, E.; Salvietti, G.; Prattichizzo, D.; Ernst, M.; Moscatelli, A.; JÃrntell, H.; Kappers, A.M.L.; et al. Hand Synergies: Integration of Robotics and Neuroscience for Understanding the Control of Biological and Artificial Hands. Phys. Life Rev. 2016, 17, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarque-Bou, N.; Gracia-Ibáñez, V.; Sancho-Bru, J.L.; Vergara, M.; Pérez-González, A.; Andrés, F.J. Using Kinematic Reduction for Studying Grasping Postures. An Application to Power and Precision Grasp of Cylinders. Appl. Ergon. 2016, 56, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Cepriá-Bernal, J.; Pérez-González, A.; Mora, M.C.; Sancho-Bru, J.L. Grip Force and Force Sharing in Two Different Manipulation Tasks with Bottles. Ergonomics 2016, 60, 957–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundaram, S.; Kellnhofer, P.; Li, Y.; Zhu, J.Y.; Torralba, A.; Matusik, W. Learning the Signatures of the Human Grasp Using a Scalable Tactile Glove. Nature 2019, 569, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Cepriá-bernal, J.; Pérez-gonzález, A. Dataset of Tactile Signatures of the Human Right Hand in Twenty-One Activities of Daily Living Using a High Spatial Resolution Pressure Sensor. Sensors 2021, 21, 2594. [Google Scholar] [CrossRef]
- Schieber, M.H.; Santello, M. Hand Function: Peripheral and Central Constraints on Performance. J. Appl. Physiol. 2004, 96, 2293–2300. [Google Scholar] [CrossRef] [Green Version]
- Santello, M.; Soechting, J.F. Force Synergies for Multifingered Grasping. Exp. Brain Res. 2000, 133, 457–467. [Google Scholar] [CrossRef]
- D’Avella, A.; Tresch, M.C. Modularity in the Motor System: Decomposition of Muscle Patterns as Combinations of Time-Varying Synergies. Adv. Neural Inf. Process. Syst. 2002, 14, 141–148. [Google Scholar]
- Santello, M.; Baud-Bovy, G.; Jörntell, H. Neural Bases of Hand Synergies. Front. Comput. Neurosci. 2013, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Gentner, R.; Classen, J. Modular Organization of Finger Movements by the Human Central Nervous System. Neuron 2006, 52, 731–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, D.; Patel, V.; Burns, M.; Chandramouli, R.; Vinjamuri, R. Neural Decoding of Synergy-Based Hand Movements Using Electroencephalography. IEEE Access 2019, 7, 18155–18163. [Google Scholar] [CrossRef]
- Latash, M.L.; Scholz, J.F. Frederic Danion Structure of Motor Variability in Marginally Redundant Multifinger Force Production Tasks. Exp. Brain Res. 2001, 141, 153–165. [Google Scholar] [CrossRef]
- Latash, M.L.; Friedman, J.; Wook, S.; Anatol, K.; Zatsiorsky, V.M. Prehension Synergies and Control with Referent Hand Configurations. Exp. Brain Res. 2010, 202, 213–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigouroux, L.; Rossi, J.; Foissac, M.; Grélot, L.; Berton, E. Finger Force Sharing during an Adapted Power Grip Task. Neurosci. Lett. 2011, 504, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Rossi, J.; Berton, E.; Grélot, L.; Barla, C.; Vigouroux, L. Characterisation of Forces Exerted by the Entire Hand during the Power Grip: Effect of the Handle Diameter. Ergonomics 2012, 55, 682–692. [Google Scholar] [CrossRef]
- Zatsiorsky, V.M.; Li, Z.M.; Latash, M.L. Enslaving Effects in Multi-Finger Force Production. Exp. Brain Res. 2000, 131, 187–195. [Google Scholar] [CrossRef]
- Kim, S.W.; Shim, J.K.; Zatsiorsky, V.M.; Latash, M.L. Finger Inter-Dependence: Linking the Kinetic and Kinematic Variables. Hum. Mov. Sci. 2008, 27, 408–422. [Google Scholar] [CrossRef] [Green Version]
- Gentile, C.; Cordella, F.; Zollo, L. Hierarchical Human-Inspired Control Strategies for Prosthetic Hands. Sensors 2022, 22, 2521. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Santos, V. (Eds.) The Human Hand as an Inspiration for Robot Hand Development, 1st ed.; Springer: Cham, Switzerland, 2014; ISBN 9783319030166. [Google Scholar]
- Zatsiorsky, V.M.; Gao, F.; Latash, M.L. Finger Force Vectors in Multi-Finger Prehension. J. Biomech. 2003, 36, 1745–1749. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Xiong, C.; Chen, W.; Liang, J.; Sun, B.Y.; Gong, X. Common Kinematic Synergies of Various Human Locomotor Behaviours. R. Soc. Open Sci. 2021, 8, 210161. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Chen, C.; Wang, X.; Chu, W.C.W.; Tong, R.K.Y. Bci Training Effects on Chronic Stroke Correlate with Functional Reorganization in Motor-Related Regions: A Concurrent Eeg and Fmri Study. Brain Sci. 2021, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.; Ernst, M.O.; Buss, M. Human and Robot Hands: Sensorimotor Synergies to Bridge the Gap Between Neuroscience and Robotics; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-319-26706-7. [Google Scholar]
- Gabiccini, M.; Bicchi, A.; Prattichizzo, D.; Malvezzi, M. On the Role of Hand Synergies in the Optimal Choice of Grasping Forces. Auton. Robots 2011, 31, 235–252. [Google Scholar] [CrossRef] [Green Version]
- Burns, M.; Zavoda, Z.; Nataraj, R.; Pochiraju, K.; Vinjamuri, R. HERCULES: A Three Degree-of-Freedom Pneumatic Upper Limb Exoskeleton for Stroke Rehabilitation. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4959–4962. [Google Scholar] [CrossRef]
- Burns, M.K.; Van Orden, K.; Patel, V.; Vinjamuri, R. Towards a Wearable Hand Exoskeleton with Embedded Synergies. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Jeju, Korea, 11–15 July 2017. [Google Scholar]
- Burns, M.K.; Vinjamuri, R. Design of a Soft Glove-Based Robotic Hand Exoskeleton with Embedded Synergies. In Advances in Motor Neuroprostheses; Springer International Publishing: Cham, Switzerland, 2020; pp. 71–87. ISBN 9783030387402. [Google Scholar]
- Chappell, P.H. Mechatronic Hands: Prosthetic and Robotic Design; Institution of Engineering and Technology: Stevenage, UK, 2016; ISBN 9781785611551. [Google Scholar]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
170 g | 0.13 (0.12) | 0.05 (0.07) | 0.04 (0.04) | 0.07 (0.08) | 0.09 (0.12) | 0.06 (0.05) | 0.12 (0.12) | 0.03 (0.03) | 0.09 (0.06) | 0.03 (0.04) |
320 g | 0.1 (0.06) | 0.06 (0.07) | 0.03 (0.04) | 0.04 (0.07) | 0.12 (0.17) | 0.05 (0.06) | 0.07 (0.09) | 0.04 (0.04) | 0.1 (0.08) | 0.04 (0.06) |
470 g | 0.09 (0.08) | 0.07 (0.07) | 0.04 (0.05) | 0.05 (0.05) | 0.12 (0.15) | 0.04 (0.05) | 0.06 (0.05) | 0.05 (0.04) | 0.16 (0.15) | 0.06 (0.1) |
620 g | 0.17 (0.14) | 7.5 (9.1) | 0.08 (0.06) | 0.04 (0.05) | 0.15 (0.16) | 0.07 (0.08) | 0.08 (0.07) | 0.06 (0.08) | 0.14 (0.17) | 0.07 (0.09) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, D.; Olikkal, P.; Adali, T.; Vinjamuri, R. Dynamical Synergies of Multidigit Hand Prehension. Sensors 2022, 22, 4177. https://doi.org/10.3390/s22114177
Pei D, Olikkal P, Adali T, Vinjamuri R. Dynamical Synergies of Multidigit Hand Prehension. Sensors. 2022; 22(11):4177. https://doi.org/10.3390/s22114177
Chicago/Turabian StylePei, Dingyi, Parthan Olikkal, Tülay Adali, and Ramana Vinjamuri. 2022. "Dynamical Synergies of Multidigit Hand Prehension" Sensors 22, no. 11: 4177. https://doi.org/10.3390/s22114177