Machine Learning for Intelligent-Reflecting-Surface-Based Wireless Communication towards 6G: A Review
Abstract
:1. Introduction
- In the beginning, we give a complete insight into IRS technology. We provide a comprehensive introduction of the IRS technology, including its structure, working principle, and advantages.
- ML-based approaches are provided in a systematic way to understand the state-of-the-art research. We categorize different ML techniques as DL, RL, SL, UL, and FL. Each related paper is described in a comprehensive way by placing them into one of the categories. The problems that are related to IRS system using ML are described as channel state information (CSI), phase shift estimation, signal detection, beamforming, optimization, spectral efficiency, and privacy protection or security.
- Finally, we give some of the future research scopes that are further needed to be investigated by combined IRS and ML approaches.
2. IRS Technology Fundamentals
2.1. IRS Hardware Architecture and Its Working Principle
2.2. IRS Reflection
2.3. Channel Model of IRS
2.4. IRS Based Communication Advantages
- IRS can provide an alternative path where direct communication is not possible. A virtual path is established dynamically when the communication takes place between the transmitter and receiver [29].
- IRS devices are passive in nature, which implies less power consumption compared to relay communication. The amplification and forwarding of an incoming signal are possible without employing power amplifiers [37]. Instead, the signal phase shift is controlled by the reflecting elements to direct the signal to the UE.
- Millimeter wavelength communication can address the bandwidth shortage problem for 6G communication. However, the path loss is higher than other low-frequency bands [38]. IRS can improve the communication to gain a better performance.
- IRS can be utilized to compensate for the channel rank condition in an environment suffering from a rank deficiency issue [39].
- The propagation of EM waves can be reconfigured in a software-controlled fashion, which can turn the probabilistic wireless channel model into a deterministic model [40].
- As the IRS is based on the reflection of signals with directed beamforming, Ralyleigh fast fading is converted to Rician slow fading.
- IRS can provide an effective solution for both the co-channel and inter-channel interference of wireless communication [29].
3. Machine Learning for IRS-Assisted Communication Systems
3.1. Deep Learning for IRS-Enhanced Communication Systems
3.2. Reinforcement Learning for IRS-Enhanced Communication Systems
3.3. Supervised Learning for IRS-Enhanced Communication Systems
References | ML Model Architecture | Major Contributions | Remarks |
---|---|---|---|
[84] | DNN with three full layers | Phase reconfiguration | Performance is close to the perfect CSI-based approach. The pilot signal overhead is reduced |
[85] | Multi-layer perceptron (MLP) with eight hidden layers, ReLU activation function | CE by normalized mean squared error algorithm | Performance improves with higher signal-to-noise ratio (SNR) |
[23] | Complex-valued DnCNN | Compressive sensing-based broadband CE algorithm | Robustness makes it possible for application in different SNRs without repetitive training |
[86] | Deep-learning-based phase shift control (D-PSC), fully connected layers | Find out optimal phase shifts maximizing data rate | Data rate more than 25% over the conventional phase shift control schemes using the same pilot resources |
[54] | CNN with three convolution layers | Predict the optimal IRS phase shift | Can converge to near-optimal data rates using less than 2% of the total number of receiver locations |
[87] | Deep-RL | Decaying-DQN-based algorithm | Proposed system significantly reduces energy dissipation by integrating IRSs in UAV-enabled wireless networks |
[88] | ML-inspired algorithmic framework | Cross-entropy optimization | Proposed method can simultaneously optimize transmit and reflecting beamforming in an IRS-assisted wireless system |
[89] | ML framework | Optimization-driven DDPG algorithm | Proposed model can improve both convergence and reward performance compared to conventional model-free learning scheme |
[90] | Fully-connected DNN model | Spectral efficiency problem | Proposed model has less computational complexity and does not require any computational load for data labeling |
[91] | Neural network model | IRS-aided localization calculation | Proposed system requires multiple APs and a large number of fingerprint grid samples and then acquires great localization results |
[83] | DNN with three hidden layers | Beam management (BM) classification for mmWave networks | Gained highly efficient BM with remarkably attenuate system overhead |
[52] | Artificial neural network (ANN) with 10 layers, ReLU activation functions | ANN data-driven approaches for optimization | Proposed model can be trained to learn virtually any input–output map [92] |
[93] | CNN with three conventional layers, ReLU activation functions | CE using deep denoising algorithm | Proposed method can use optimal minimum mean square error estimator with channel probability density function |
[94] | Recurrent neural network (RNN) model, ReLU activation functions | CE using single and multi-scale RNN algorithm | Model enhanced flexibility of overall network to obtain better generalization and fitting capabilities |
IRS Communication Problem | ML Approach | Developed Model |
---|---|---|
Channel estimation | DL, SL, RL, FL | deep multi-layer perceptron, ChannelNet, CV-DnCNN, DReL, CDRN, ODE-CNN, KGNet |
Signal detection | DL | DeepIRS, CNN, SVM |
Phase shift configuration and beamforming | DL, RL, SL, FL, UL | DQN, DNN, DL-RNN, DQN, DeepMIMO, LPSNet |
Security | DL, FL | DRL, CNN |
Resource allocation | DL, FL | DNN, AirFL |
3.4. Unsupervised Learning for IRS-Enhanced Communication Systems
3.5. Federated Learning for IRS-Enhanced Communication Systems
4. Future Research Trends for ML-Based IRS-Assisted Wireless Communication
4.1. Optimal Placement of IRS
4.2. Dynamic Hybrid Beamforming
4.3. Data Collection and Model Training
4.4. Constrained System Modeling
4.5. Channel State Characterization
4.6. IRS for IoT Network
4.7. Protection Against Eavesdropping
4.8. MmWave Communication
4.9. EDGE Intelligence
4.10. Hybrid Communication Implementation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wild, T.; Braun, V.; Viswanathan, H. Joint Design of Communication and Sensing for Beyond 5G and 6G Systems. IEEE Access 2021, 9, 30845–30857. [Google Scholar] [CrossRef]
- Rajatheva, N.; Atzeni, I.; Bicais, S.; Bjornson, E.; Bourdoux, A.; Buzzi, S.; D’Andrea, C.; Dore, J.B.; Erkucuk, S.; Fuentes, M.; et al. Scoring the terabit/s goal: Broadband connectivity in 6G. arXiv 2020, arXiv:2008.07220. [Google Scholar]
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.S. What should 6G be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, H.; Mogensen, P.E. Communications in the 6G era. IEEE Access 2020, 8, 57063–57074. [Google Scholar] [CrossRef]
- Chen, Z.; Ning, B.; Han, C.; Tian, Z.; Li, S. Intelligent Reflecting Surface Assisted Terahertz Communications Toward 6G. IEEE Wirel. Commun. 2021, 28, 110–117. [Google Scholar] [CrossRef]
- Chen, Z.; Tang, J.; Zhang, X.Y.; So, D.K.C.; Jin, S.; Wong, K.K. Hybrid evolutionary-based sparse channel estimation for IRS-assisted mmWave MIMO systems. IEEE Trans. Wirel. Commun. 2021, 21, 1586–1601. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable intelligent surfaces: Principles and opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R. Capacity characterization for intelligent reflecting surface aided MIMO communication. IEEE J. Sel. Areas Commun. 2020, 38, 1823–1838. [Google Scholar] [CrossRef]
- Yu, X.; Xu, D.; Schober, R. Enabling secure wireless communications via intelligent reflecting surfaces. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Big Island, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Jung, J.S.; Park, C.Y.; Oh, J.H.; Song, H.K. Intelligent Reflecting Surface for Spectral Efficiency Maximization in the Multi-User MISO Communication Systems. IEEE Access 2021, 9, 134695–134702. [Google Scholar] [CrossRef]
- Zheng, B.; You, C.; Mei, W.; Zhang, R. A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications. IEEE Commun. Surv. Tutor. 2022, 24, 1035–1071. [Google Scholar] [CrossRef]
- Dai, H.; Shen, W.; Ding, L.; Gong, S.; An, J. Subarray Partition Algorithms for RIS-Aided MIMO Communications. IEEE Internet Things J. 2022; in press. [Google Scholar] [CrossRef]
- Mishra, D.; Johansson, H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4659–4663. [Google Scholar]
- Pan, Y.; Deng, Z. Channel Estimation for Wireless Communication Systems Aided by Large Intelligent Reflecting Surface. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China, 26–28 March 2021; pp. 637–643. [Google Scholar]
- Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Zappone, A.; Di Renzo, M.; Debbah, M. Wireless networks design in the era of deep learning: Model-based, AI-based, or both? IEEE Trans. Commun. 2019, 67, 7331–7376. [Google Scholar] [CrossRef] [Green Version]
- Ro, J.H.; Ha, J.G.; Lee, W.S.; You, Y.H.; Song, H.K. Improved MIMO Signal Detection Based on DNN in MIMO-OFDM System. CMC-Comput. Mater. Contin. 2022, 70, 3625–3636. [Google Scholar] [CrossRef]
- Jang, J.Y.; Park, C.Y.; Shin, B.S.; Song, H.K. Combined Deep Learning and SOR Detection Technique for High Reliability in Massive MIMO Systems. IEEE Access 2021, 9, 148976–148987. [Google Scholar] [CrossRef]
- Kang, T.H.; Lee, W.S.; Baek, M.S.; Bae, B.; Song, H.K. Deep Learning-Based Bootstrap Detection Scheme for Digital Broadcasting System. IEEE Access 2021, 9, 19562–19571. [Google Scholar] [CrossRef]
- Song, Y.; Khandaker, M.R.; Tariq, F.; Wong, K.K.; Toding, A. Truly intelligent reflecting surface-aided secure communication using deep learning. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–6. [Google Scholar]
- Ye, H.; Li, G.Y.; Juang, B.H. Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wirel. Commun. Lett. 2017, 7, 114–117. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, M.M.; Zhao, M.; Lei, M.; Yu, Q. An AMP-based network with deep residual learning for mmWave beamspace channel estimation. IEEE Wirel. Commun. Lett. 2019, 8, 1289–1292. [Google Scholar] [CrossRef]
- Liu, S.; Gao, Z.; Zhang, J.; Di Renzo, M.; Alouini, M.S. Deep denoising neural network assisted compressive channel estimation for mmWave intelligent reflecting surfaces. IEEE Trans. Veh. Technol. 2020, 69, 9223–9228. [Google Scholar] [CrossRef]
- Dajer, M.; Ma, Z.; Piazzi, L.; Prasad, N.; Qi, X.F.; Sheen, B.; Yang, J.; Yue, G. Reconfigurable intelligent surface: Design the channel—A new opportunity for future wireless networks. Digit. Commun. Netw. 2021, 8, 87–104. [Google Scholar] [CrossRef]
- Sharma, T.; Chehri, A.; Fortier, P. Reconfigurable Intelligent Surfaces for 5G and beyond Wireless Communications: A Comprehensive Survey. Energies 2021, 14, 8219. [Google Scholar] [CrossRef]
- Tapio, V.; Hemadeh, I.; Mourad, A.; Shojaeifard, A.; Juntti, M. Survey on reconfigurable intelligent surfaces below 10 GHz. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 175. [Google Scholar] [CrossRef]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light. Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef]
- Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 2018, 56, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhang, S.; Zheng, B.; You, C.; Zhang, R. Intelligent reflecting surface-aided wireless communications: A tutorial. IEEE Trans. Commun. 2021, 69, 3313–3351. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.Q.; Liu, S.; Zhang, Q.; Zhao, J.; Dai, J.Y.; Bai, G.D.; Wan, X.; Cheng, Q.; Castaldi, G.; et al. Space-time-coding digital metasurfaces. Nat. Commun. 2018, 9, 4334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Chen, X.; Yang, F.; Xu, S.; Cao, X.; Li, M.; Gao, J. Design of resistor-loaded reflectarray elements for both amplitude and phase control. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 1159–1162. [Google Scholar] [CrossRef]
- Nayeri, P.; Yang, F.; Elsherbeni, A.Z. Reflectarray Antennas: Theory, Designs, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2019, 58, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Abeywickrama, S.; Zhang, R.; Wu, Q.; Yuen, C. Intelligent reflecting surface: Practical phase shift model and beamforming optimization. IEEE Trans. Commun. 2020, 68, 5849–5863. [Google Scholar] [CrossRef]
- Taha, A.; Alrabeiah, M.; Alkhateeb, A. Enabling large intelligent surfaces with compressive sensing and deep learning. IEEE Access 2021, 9, 44304–44321. [Google Scholar] [CrossRef]
- Björnson, E.; Özdogan, Ö.; Larsson, E.G. Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying? IEEE Wirel. Commun. Lett. 2019, 9, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef] [Green Version]
- Xiu, Y.; Zhao, Y.; Liu, Y.; Zhao, J.; Yagan, O.; Wei, N. IRS-assisted millimeter wave communications: Joint power allocation and beamforming design. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Nanjing, China, 29 March 2021; pp. 1–6. [Google Scholar]
- Van Chien, T.; Ngo, H.Q.; Chatzinotas, S.; Ottersten, B. Reconfigurable Intelligent Surface-Assisted Massive MIMO: Favorable Propagation, Channel Hardening, and Rank Deficiency. arXiv 2021, arXiv:2107.03434. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Gacanin, H.; Di Renzo, M. Wireless 2.0: Toward an intelligent radio environment empowered by reconfigurable meta-surfaces and artificial intelligence. IEEE Veh. Technol. Mag. 2020, 15, 74–82. [Google Scholar] [CrossRef]
- Liu, X.; Chen, M.; Liu, Y.; Chen, Y.; Cui, S.; Hanzo, L. Artificial intelligence aided next-generation networks relying on UAVs. IEEE Wirel. Commun. 2020, 28, 120–127. [Google Scholar] [CrossRef]
- Wang, C.X.; Di Renzo, M.; Stanczak, S.; Wang, S.; Larsson, E.G. Artificial intelligence enabled wireless networking for 5G and beyond: Recent advances and future challenges. IEEE Wirel. Commun. 2020, 27, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Mitchell, T.M. The Discipline of Machine Learning; Carnegie Mellon University, School of Computer Science, Machine Learning Department: Pittsburgh, PA, USA, 2006; Volume 9. [Google Scholar]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Prentice-Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Cherkassky, V.; Mulier, F.M. Learning from Data: Concepts, Theory, and Methods; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Rudin, C.; Wagstaff, K.L. Machine learning for science and society. Mach. Learn. 2014, 95, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4. [Google Scholar]
- Adam, B.; Smith, I.F. Reinforcement learning for structural control. J. Comput. Civ. Eng. 2008, 22, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Ye, H.; Li, G.Y.; Juang, B.H.F. Deep learning in physical layer communications. IEEE Wirel. Commun. 2019, 26, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Zappone, A.; Di Renzo, M.; Debbah, M.; Lam, T.T.; Qian, X. Model-aided wireless artificial intelligence: Embedding expert knowledge in deep neural networks for wireless system optimization. IEEE Veh. Technol. Mag. 2019, 14, 60–69. [Google Scholar] [CrossRef]
- Wen, C.K.; Shih, W.T.; Jin, S. Deep learning for massive MIMO CSI feedback. IEEE Wirel. Commun. Lett. 2018, 7, 748–751. [Google Scholar] [CrossRef] [Green Version]
- Sheen, B.; Yang, J.; Feng, X.; Chowdhury, M.M.U. A deep learning based modeling of reconfigurable intelligent surface assisted wireless communications for phase shift configuration. IEEE Open J. Commun. Soc. 2021, 2, 262–272. [Google Scholar] [CrossRef]
- Zhang, X.; Li, G.; Zhang, J.; Hu, A.; Hou, Z.; Xiao, B. Deep-Learning-Based Physical-Layer Secret Key Generation for FDD Systems. IEEE Internet Things J. 2022, 9, 6081–6094. [Google Scholar] [CrossRef]
- Huang, C.; Alexandropoulos, G.C.; Yuen, C.; Debbah, M. Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces. In Proceedings of the 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2–5 July 2019; pp. 1–5. [Google Scholar]
- Gao, J.; Zhong, C.; Chen, X.; Lin, H.; Zhang, Z. Unsupervised learning for passive beamforming. IEEE Commun. Lett. 2020, 24, 1052–1056. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Khan, K.S.; Haider, N.; Shin, S.Y. Deep-learning-aided detection for reconfigurable intelligent surfaces. arXiv 2019, arXiv:1910.09136. [Google Scholar]
- Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal Process. Mag. 2017, 34, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, Y.; Chen, Y.; Poor, H.V. RIS enhanced massive non-orthogonal multiple access networks: Deployment and passive beamforming design. IEEE J. Sel. Areas Commun. 2020, 39, 1057–1071. [Google Scholar] [CrossRef]
- Kim, J.; Hosseinalipour, S.; Kim, T.; Love, D.J.; Brinton, C.G. Multi-IRS-assisted multi-cell uplink MIMO communications under imperfect CSI: A deep reinforcement learning approach. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; pp. 1–7. [Google Scholar]
- Al-Hilo, A.; Shokry, M.; Elhattab, M.; Assi, C.; Sharafeddine, S. Reconfigurable intelligent surface enabled vehicular communication: Joint user scheduling and passive beamforming. IEEE Trans. Veh. Technol. 2022, 71, 2333–2345. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Chen, Y.; Al-Dhahir, N. Machine learning for user partitioning and phase shifters design in RIS-aided NOMA networks. IEEE Trans. Commun. 2021, 69, 7414–7428. [Google Scholar] [CrossRef]
- Huang, C.; Mo, R.; Yuen, C. Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning. IEEE J. Sel. Areas Commun. 2020, 38, 1839–1850. [Google Scholar] [CrossRef]
- Feng, K.; Wang, Q.; Li, X.; Wen, C.K. Deep reinforcement learning based intelligent reflecting surface optimization for MISO communication systems. IEEE Wirel. Commun. Lett. 2020, 9, 745–749. [Google Scholar] [CrossRef]
- Taha, A.; Zhang, Y.; Mismar, F.B.; Alkhateeb, A. Deep reinforcement learning for intelligent reflecting surfaces: Towards standalone operation. In Proceedings of the 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29 May 2020; pp. 1–5. [Google Scholar]
- Yang, H.; Xiong, Z.; Zhao, J.; Niyato, D.; Xiao, L.; Wu, Q. Deep reinforcement learning-based intelligent reflecting surface for secure wireless communications. IEEE Trans. Wirel. Commun. 2020, 20, 375–388. [Google Scholar] [CrossRef]
- Zhang, Q.; Saad, W.; Bennis, M. Millimeter wave communications with an intelligent reflector: Performance optimization and distributional reinforcement learning. IEEE Trans. Wirel. Commun. 2021, 21, 1836–1850. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2001. [Google Scholar]
- Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Rahman, M.H.; Sejan, M.A.S.; Kim, J.J.; Chung, W.Y. Reduced tilting effect of smartphone cmos image sensor in visible light indoor positioning. Electronics 2020, 9, 1635. [Google Scholar] [CrossRef]
- Umebayashi, K.; Kobayashi, M.; Lopez-Benitez, M. Efficient time domain deterministic-stochastic model of spectrum usage. IEEE Trans. Wirel. Commun. 2017, 17, 1518–1527. [Google Scholar] [CrossRef]
- Feng, Z.; Li, X.; Zhang, Q.; Li, W. Proactive radio resource optimization with margin prediction: A data mining approach. IEEE Trans. Veh. Technol. 2017, 66, 9050–9060. [Google Scholar] [CrossRef]
- Thilina, K.G.M.; Hossain, E.; Kim, D.I. DCCC-MAC: A dynamic common-control-channel-based MAC protocol for cellular cognitive radio networks. IEEE Trans. Veh. Technol. 2015, 65, 3597–3613. [Google Scholar] [CrossRef]
- Abouzar, P.; Shafiee, K.; Michelson, D.G.; Leung, V.C. Action-based scheduling technique for 802.15. 4/ZigBee wireless body area networks. In Proceedings of the 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, ON, Canada, 11–14 September 2011; pp. 2188–2192. [Google Scholar]
- Yang, B.; Cao, X.; Huang, C.; Yuen, C.; Qian, L.; Di Renzo, M. Intelligent spectrum learning for wireless networks with reconfigurable intelligent surfaces. IEEE Trans. Veh. Technol. 2021, 70, 3920–3925. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, S.; Zhong, C.; Ma, J.; Dobre, O.A. Ordinary differential equation-based CNN for channel extrapolation over RIS-assisted communication. IEEE Commun. Lett. 2021, 25, 1921–1925. [Google Scholar] [CrossRef]
- Aygül, M.A.; Nazzal, M.; Arslan, H. Deep learning-based optimal RIS interaction exploiting previously sampled channel correlations. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6. [Google Scholar]
- Zhang, S.; Zhang, S.; Gao, F.; Ma, J.; Dobre, O.A. Deep learning optimized sparse antenna activation for reconfigurable intelligent surface assisted communication. IEEE Trans. Commun. 2021, 69, 6691–6705. [Google Scholar] [CrossRef]
- Elbir, A.M.; Papazafeiropoulos, A.; Kourtessis, P.; Chatzinotas, S. Deep channel learning for large intelligent surfaces aided mm-wave massive MIMO systems. IEEE Wirel. Commun. Lett. 2020, 9, 1447–1451. [Google Scholar] [CrossRef]
- Lu, Y.; Dai, L. Reconfigurable intelligent surface based hybrid precoding for THz communications. arXiv 2020, arXiv:2012.06261. [Google Scholar] [CrossRef]
- Abuzainab, N.; Alrabeiah, M.; Alkhateeb, A.; Sagduyu, Y.E. Deep learning for THz drones with flying intelligent surfaces: Beam and handoff prediction. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Jia, C.; Gao, H.; Chen, N.; He, Y. Machine learning empowered beam management for intelligent reflecting surface assisted MmWave networks. China Commun. 2020, 17, 100–114. [Google Scholar] [CrossRef]
- Özdoğan, Ö.; Björnson, E. Deep learning-based phase reconfiguration for intelligent reflecting surfaces. In Proceedings of the 2020 54th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 1–5 November 2020; pp. 707–711. [Google Scholar]
- Li, W.B.; Shin, Y. Deep Learning for Intelligent Reflecting Surfaces Aided MIMO Systems. In Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 19–21 October 2021; pp. 902–905. [Google Scholar]
- Kim, H.; Wu, J.; Park, Y.; Kim, S.; Shim, B. Deep Learning-Based Intelligent Reflecting Surface Phase Shift Control. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Virtual, 27 September–28 October 2021; pp. 1–5. [Google Scholar]
- Liu, X.; Liu, Y.; Chen, Y. Machine learning empowered trajectory and passive beamforming design in UAV-RIS wireless networks. IEEE J. Sel. Areas Commun. 2020, 39, 2042–2055. [Google Scholar] [CrossRef]
- Chen, J.C. Machine Learning-Inspired Algorithmic Framework for Intelligent Reflecting Surface-Assisted Wireless Systems. IEEE Trans. Veh. Technol. 2021, 70, 10671–10685. [Google Scholar] [CrossRef]
- Gong, S.; Lin, J.; Zhang, J.; Niyato, D.; Kim, D.I.; Guizani, M. Optimization-driven machine learning for intelligent reflecting surfaces assisted wireless networks. arXiv 2020, arXiv:2008.12938. [Google Scholar]
- Nguyen, N.T.; Nguyen, L.V.; Huynh-The, T.; Nguyen, D.H.; Swindlehurst, A.L.; Juntti, M. Machine Learning-based Reconfigurable Intelligent Surface-aided MIMO Systems. In Proceedings of the 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Oulu, Finland, 27–30 September 2021; pp. 101–105. [Google Scholar]
- Nguyen, C.L.; Georgiou, O.; Gradoni, G. Reconfigurable intelligent surfaces and machine learning for wireless fingerprinting localization. arXiv 2020, arXiv:2010.03251. [Google Scholar]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Liu, C.; Liu, X.; Ng, D.W.K.; Yuan, J. Deep residual network empowered channel estimation for IRS-assisted multi-user communication systems. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–7. [Google Scholar]
- Jin, Y.; Zhang, J.; Zhang, X.; Xiao, H.; Ai, B.; Ng, D.W.K. Channel Estimation for Semi-Passive Reconfigurable Intelligent Surfaces With Enhanced Deep Residual Networks. IEEE Trans. Veh. Technol. 2021, 70, 11083–11088. [Google Scholar] [CrossRef]
- Schmarje, L.; Santarossa, M.; Schröder, S.M.; Koch, R. A survey on semi-, self-and unsupervised learning for image classification. IEEE Access 2021, 9, 82146–82168. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, C.; Zhang, H.; Ren, Y.; Chen, K.C.; Hanzo, L. Thirty years of machine learning: The road to Pareto-optimal wireless networks. IEEE Commun. Surv. Tutor. 2020, 22, 1472–1514. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, Y.; Chen, Y. Reinforcement learning in multiple-UAV networks: Deployment and movement design. IEEE Trans. Veh. Technol. 2019, 68, 8036–8049. [Google Scholar] [CrossRef] [Green Version]
- Assra, A.; Yang, J.; Champagne, B. An EM approach for cooperative spectrum sensing in multiantenna CR networks. IEEE Trans. Veh. Technol. 2015, 65, 1229–1243. [Google Scholar] [CrossRef]
- Morell, A.; Correa, A.; Barceló, M.; Vicario, J.L. Data aggregation and principal component analysis in WSNs. IEEE Trans. Wirel. Commun. 2016, 15, 3908–3919. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Fan, M. Digital self-interference cancellation based on independent component analysis for co-time co-frequency full-duplex communication systems. IEEE Access 2017, 5, 10222–10231. [Google Scholar] [CrossRef]
- Song, H.; Zhang, M.; Gao, J.; Zhong, C. Unsupervised learning-based joint active and passive beamforming design for reconfigurable intelligent surfaces aided wireless networks. IEEE Commun. Lett. 2020, 25, 892–896. [Google Scholar] [CrossRef]
- Niknam, S.; Dhillon, H.S.; Reed, J.H. Federated learning for wireless communications: Motivation, opportunities, and challenges. IEEE Commun. Mag. 2020, 58, 46–51. [Google Scholar] [CrossRef]
- Ma, D.; Li, L.; Ren, H.; Wang, D.; Li, X.; Han, Z. Distributed rate optimization for intelligent reflecting surface with federated learning. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Ni, W.; Liu, Y.; Yang, Z.; Tian, H.; Shen, X. Federated learning in multi-RIS aided systems. IEEE Internet Things J. 2021, 9, 9608–9624. [Google Scholar] [CrossRef]
- Elbir, A.M.; Coleri, S. Federated Learning for Channel Estimation in Conventional and RIS-Assisted Massive MIMO. IEEE Trans. Wirel. Commun. 2022, 21, 4255–4268. [Google Scholar] [CrossRef]
- Subrt, L.; Pechac, P. Intelligent walls as autonomous parts of smart indoor environments. IET Commun. 2012, 6, 1004–1010. [Google Scholar] [CrossRef]
- Batista, G.E.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [Google Scholar] [CrossRef]
- Yu, X.; Jamali, V.; Xu, D.; Ng, D.W.K.; Schober, R. Smart and reconfigurable wireless communications: From IRS modeling to algorithm design. IEEE Wireless Commun. 2021, 28, 118–125. [Google Scholar] [CrossRef]
- Elbir, A.M.; Mishra, K.V. A survey of deep learning architectures for intelligent reflecting surfaces. arXiv 2020, arXiv:2009.02540. [Google Scholar]
- Chettri, L.; Bera, R. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems. IEEE Internet Things J. 2019, 7, 16–32. [Google Scholar] [CrossRef]
- Wu, Y.; Khisti, A.; Xiao, C.; Caire, G.; Wong, K.K.; Gao, X. A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE J. Sel. Areas Commun. 2018, 36, 679–695. [Google Scholar] [CrossRef] [Green Version]
- Busari, S.A.; Huq, K.M.S.; Mumtaz, S.; Dai, L.; Rodriguez, J. Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Commun. Surv. Tutor. 2017, 20, 836–869. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Chen, J.; Ran, X. Deep learning with edge computing: A review. Proc. IEEE 2019, 107, 1655–1674. [Google Scholar] [CrossRef]
- Sejan, M.A.S.; Chung, W.Y. Indoor fine particulate matter monitoring in a large area using bidirectional multihop VLC. IEEE Internet Things J. 2020, 8, 7214–7228. [Google Scholar] [CrossRef]
- Rahman, M.H.; Sejan, M.A.S. Performance analysis of indoor positioning system using visible light based on two-LEDs and image sensor for different handhold situation of mobile phone. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1515–1518. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sejan, M.A.S.; Rahman, M.H.; Shin, B.-S.; Oh, J.-H.; You, Y.-H.; Song, H.-K. Machine Learning for Intelligent-Reflecting-Surface-Based Wireless Communication towards 6G: A Review. Sensors 2022, 22, 5405. https://doi.org/10.3390/s22145405
Sejan MAS, Rahman MH, Shin B-S, Oh J-H, You Y-H, Song H-K. Machine Learning for Intelligent-Reflecting-Surface-Based Wireless Communication towards 6G: A Review. Sensors. 2022; 22(14):5405. https://doi.org/10.3390/s22145405
Chicago/Turabian StyleSejan, Mohammad Abrar Shakil, Md Habibur Rahman, Beom-Sik Shin, Ji-Hye Oh, Young-Hwan You, and Hyoung-Kyu Song. 2022. "Machine Learning for Intelligent-Reflecting-Surface-Based Wireless Communication towards 6G: A Review" Sensors 22, no. 14: 5405. https://doi.org/10.3390/s22145405
APA StyleSejan, M. A. S., Rahman, M. H., Shin, B.-S., Oh, J.-H., You, Y.-H., & Song, H.-K. (2022). Machine Learning for Intelligent-Reflecting-Surface-Based Wireless Communication towards 6G: A Review. Sensors, 22(14), 5405. https://doi.org/10.3390/s22145405