A High-Detection-Efficiency Optoelectronic Device for Trace Cadmium Detection
Abstract
:1. Introduction
2. Structure and Operating Principle of the High-Detection-Efficiency Photodiode
3. Simulation Analysis of the High-Detection-Efficiency Photodiode
4. Experiments and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Ai, S.; Zhang, W.; Huang, D.; Zhang, Y. Assessment of the bioavailability, bioaccessibility and transfer of heavy metals in the soil-grain-human systems near a mining and smelting area in NW China. Sci. Total Environ. 2017, 609, 822–829. [Google Scholar] [CrossRef]
- Ran, J.; Wang, D.; Wang, C.; Zhang, G.; Zhang, H. Heavy metal contents, distribution, and prediction in a regional soil-wheat system. Sci. Total Environ. 2016, 544, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.L.C.; de Andrade, J.B.; de Korn, M.G.A.; de Pereira, M.; Lemos, V.A.; dos Santos, W.N.L.; de Medeiros Rodrigues, F.; Souzaa, A.S.; Ferreira, H.S.; da Silva, E.G.P. Review of procedures involving separation and preconcentration for the determination of cadmium using spectrometric techniques. J. Hazard. Mater. 2007, 145, 358–367. [Google Scholar] [CrossRef]
- Sneddon, J.; Hardaway, C.; Bobbadi, K.K.; Reddy, A.K. Sample Preparation of soild samples for metal determination by atomic spectroscopy-An overview and selected recent applications. Appl. Spectrosc. Rev. 2006, 41, 1–14. [Google Scholar] [CrossRef]
- Kashem, M.-A.; Kawai, S.; Kikuchi, N.; Takahashi, H.; Sugawara, R.; Singh, B.-R. Effect of lherzolite on chemical Fractions of Cd and Zn and their uptake by plants in contaminated soil. Water Air Soil Pollut. 2010, 207, 241–251. [Google Scholar] [CrossRef]
- Baghdadi, M.-E.; Barakat, A.; Sajieddine, M.; Nadem, S. Heavy metal pollution and soil magnetic susceptibility in urban soil of Beni Mellal City (Morocco). Environ. Earth Sci. 2012, 66, 141–155. [Google Scholar] [CrossRef]
- Marcinkowska, M.; Barałkiewicz, D. Multielemental speciation analysis by advanced hyphenated technique-HPLC/ICP-MS: A review. Talanta 2016, 161, 177–204. [Google Scholar] [CrossRef] [PubMed]
- Terán-Baamonde, J.; Soto-Ferreiro, R.-M.; Carlosena, A.; Andrade, J.-M.; Prada, D. Determination of cadmium in sediments by diluted HCI extraction and isotope dilution ICP-MS. Talanta 2018, 186, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Jofre, C.-F.; Larregui, D.-N.; Savio, M. An eco-friendly infrared method for rapid soil sample preparation for multielemental determination by microwave induced plasma atomic emission spectrometry. Microchem. J. 2020, 159, 105448. [Google Scholar] [CrossRef]
- Umapathi, R.; Ghoreishian, S.-M.; Sonwal, S.; Rani, G.-M.; Huh, Y.-S. Protable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coordin. Chem. Rev. 2022, 453, 214305. [Google Scholar] [CrossRef]
- Oliveira, T.-M.-B.-F.; Morais, S. New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes. Appl. Sci. 2018, 8, 1925. [Google Scholar] [CrossRef] [Green Version]
- Kilbride, C.; Poole, J.; Hutchings, T.-R. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses. Environ. Pollut. 2006, 143, 16–23. [Google Scholar] [CrossRef]
- González, G.-M.; del Castillo, R.P.; Neira, J.Y. Multivariate calibration for the improvement of the quantification of cadmium in the presence of potassium as interferent by total reflection X-ray fluorescence. X-ray Spectrom. 2019, 48, 700–707. [Google Scholar] [CrossRef]
- Adler, M.; Piikki, K.; Söderström, M.; Eriksson, J.; Alshihabi, O. Predictions of Cu, Zn, and Cd concentrations in soil using portable X-ray fluorescence measurements. Sensors 2020, 20, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayo, R.; Ortiz, M.; Campos, J.; Blagoev, K.; Malcheva, G. Transition probabilities of some high lying states of Cd II. Phys. Scr. 2005, 72, 142–147. [Google Scholar] [CrossRef]
- Tu, Y.-L.; Zou, B.; Feng, H.-H.; Zhou, M.; Yang, Z.-H.; Xiong, Y. A near standard soil samples spectra enhanced modeling strategy for Cd concentration prediction. Remote Sens. 2021, 13, 2657. [Google Scholar] [CrossRef]
- Duan, C.-F.; Li, J.-M.; Zhang, Y.-H.; Ding, K.; Geng, X.-H.; Guan, Y.-F. Protable instruments for on-site analysis of environmental samples. TrAC-Trend. Anal. Chem. 2022, 154, 116653. [Google Scholar] [CrossRef]
- Li, F.-S.; Yang, W.-Q.; Ma, Q.; Cheng, H.-Z.; Lu, X.; Zhao, Y.-C. X-ray fluorescence spectroscopic analysis of trace elements in soil with an Adaboost back propagation neural network and multivariate-partial least squares regression. Meas. Sci. Technol. 2021, 32, 105501. [Google Scholar] [CrossRef]
- Pavel, S.; Krishnendu, P.; Priyabrata, S. Simultaneous detection of trace Pb(II), Cd(II) and Hg(II) by anodic stripping analyses with glassy carbon electrode modified by solid phase synthesized iron-aluminate nanoparticles. Sens. Actuators B-Chem. 2021, 329, 129052. [Google Scholar]
- Li, C.; Zhao, X.-L.; Han, X.-J. Simultaneous determination of trace Cd2+ and Pb2+ using GR/L-cysteine/Bi modified screen-printed electrodes. Anal. Methods 2018, 10, 4945–4950. [Google Scholar] [CrossRef]
- Bahinting, S.; Rollon, A.P.; Garcia-Segura, S.; Garcia, V.-C.-C.; Ensano, B.-M.-B.; Abarca, R.-R.-M.; Yee, J.-J.; de Luna, M.-D.-G. Bismuth film-coated gold ultramicroelectrode array for simultaneous quantification of Pb(II) and Cd(II) by square wave anodic stripping voltammetry. Sensors 2021, 21, 1811. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, F.-H.; Chen, L.-S.; Zhang, H.; Li, H.-X. Nickel oxyhydroxide-functionalized n-silicon photoelectrode for the photocurrent determination of Hg (II) ions at zero working voltage. Sens. Actuators B-Chem. 2018, 257, 9–15. [Google Scholar] [CrossRef]
- Guo, J.-X.; Liu, Y.; Ju, H.-X.; Lu, G.-M. From lab to field: Surface-enhanced Raman scattering-based sensing strategies for on-site analysis. TrAC-Trend. Anal. Chem. 2022, 146, 116488. [Google Scholar] [CrossRef]
- Kou, Y.C.; Wu, T.; Zheng, H.; Kadasala, N.-R.; Yang, S.; Guo, C.-Z.; Liu, Y.; Yang, J.-H. Recyclable magnetic MIP-based SERS sensors for selective, sensitive and reliable selection of paclobutrazol residues in complex environments. ACS Sustain. Chem. Eng. 2020, 38, 14549–14556. [Google Scholar] [CrossRef]
- Fiamegos, Y.; de la Calle Guntiñas, M.-B. Validation strategy for an ED-XRF method to determine trace elements in a wide range of organic and inorganic matrices based on fulfilment of performance criteria. Spectrochim. Acta B 2018, 150, 59–66. [Google Scholar] [CrossRef]
- Fu, W.-Y.; Huang, J.-K.; Wang, D.; Lei, Y.-F.; Wang, Y.; Deng, P.-K.; Long, J.-H.; Cai, H.-Z.; Liu, J.-Y. Development of an Ultra-Fast Photomultiplier Tube with Pulse-Dilation Technology. IEEE Access 2020, 8, 47533–47537. [Google Scholar] [CrossRef]
- Wright, T.; Mike, A. Photomultiplier tubes present both challenge and opportunity. Laser Focus World 2007, 43, 140–143. [Google Scholar]
- Touron, P.; Roy, F.; Magnan, P.; Marcelot, O.; Demiguel, S.; Virmontois, C. Capacitive Trench-Based Charge Transfer Device. IEEE Electron. Device Lett. 2020, 41, 1388–1391. [Google Scholar] [CrossRef]
- Kang, Y.; Mages, P.; Clawson, A.-R.; Yu, P.-K.-L.; Bitter, M.; Pan, Z.; Pauchard, A.; Hummel, S.; Lo, Y.-H. Fused InGaAs-Si avalanche photodiodes with low-noise performances. IEEE Photonics Technol. Lett. 2002, 14, 1593–1595. [Google Scholar] [CrossRef]
- Gasser, C.; Zimmermann, H. Highly sensitive monolithic optoelectronic receiver with large-area avalanche photodiode for optical wireless communication at low data rates. Opt. Eng. 2001, 60, 075109. [Google Scholar] [CrossRef]
- Haitz, R.-H.; Goetzberger, A.; Scarlett, R.-M.; Shockley, W. Avalanche effects in silicon p-n junctions. I. Localized photomultiplication studies on microplasmas. J. Appl. Phys. 1963, 34, 1581–1590. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kim, Y.-S. Design and analysis of CMOS single photon counting avalanche photodiodes integrated with active quenching circuits. J. Nucl. Sci. Technol. 2008, 45, 511–514. [Google Scholar] [CrossRef]
- Yang, J.; Jin, X.-L.; Yang, H.-J.; Tang, L.-Z.; Liu, W.-H. Design and analysis of a novel low dark count rate SPAD. J. Infrared Millim. Terahertz Waves 2016, 35, 394. [Google Scholar]
- Darek, P.; Munir, M.-E.; Ognian, M.; Jamal, D.-M.; Fang, Q.-Y. High-speed, single-photon avalanche-photodiode imager for biomedical applications. IEEE Sens. J. 2011, 11, 2401–2412. [Google Scholar]
- Johan, B. Performance and spatial sensitivity variations of single-photon avalanche diodes manufactured in an image sensor CMOS process. IEEE Photonics Technol. Lett. 2015, 36, 1118–1120. [Google Scholar]
- Kang, Y.; Lu, H.X.; Lo, Y.-H. Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection. Appl. Phys. Lett. 2003, 82, 2955–2957. [Google Scholar] [CrossRef]
- Gersbach, M.; Richardson, J.; Mazaleyrat, E.; Hardillier, S.; Niclass, C.; Henderson, R.; Grant, L.; Charbon, E. A low-noise single-photon detector implemented in a 130 nm CMOS imaging process. Solid-State Electron. 2009, 53, 803–808. [Google Scholar] [CrossRef]
- Webster, E.-A.-G.; Grant, L.-A.; Henderson, R.-K. A high-performance single-photon avalanche diode in 130 nm CMOS imaging technology. IEEE Photonics Technol. Lett. 2012, 33, 1589–1591. [Google Scholar] [CrossRef]
- Veerappan, C.; Charbon, E. A low dark count pin diode based SPAD in CMOS technology. IEEE Trans. Electron Devices 2015, 63, 65–71. [Google Scholar]
- Vignetti, M.-M.; Calmon, F.; Cellier, R.; Pittet, P.-L.; Quiquerez, A. Savoy-Navarro. Design guidelines for the integration of Geiger-mode avalanche diodes in standard CMOS technologies. Microchem. J. 2015, 46, 900–910. [Google Scholar]
- Mandai, S.; Fishburn, M.W.; Maruyama, Y. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology. Opt. Express 2012, 20, 5849–5857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, J.-A.; Grant, L.-A.; Henderson, R.-K. Low Dark Count Single-Photon Avalanche Diode Structure Compatible with Standard Nanometer Scale CMOS Technology. IEEE Photonics Technol. Lett. 2009, 21, 1020–1022. [Google Scholar] [CrossRef] [Green Version]
Reference | Dark Count Rate | Photon Detection Probability |
---|---|---|
Johan, B. [35] | 1.5 Hz/μm2 (11 V) | 40%~500 nm (11 V) |
Kang et al. [36] | 0.31 Hz/μm2 (5 V) | 17.5%~565 nm (5 V) |
Gersbach et al. [37] | 30 Hz/μm2 (4 V) | 36%~600 nm (4 V) |
Webster et al. [38] | 0.5 Hz/μm2 (0.6 V) | 28%~500 nm (1.4 V) |
This Work | 1.8 Hz/μm2 (1 V) | 41.7%~480 nm (1 V) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.; Wang, L. A High-Detection-Efficiency Optoelectronic Device for Trace Cadmium Detection. Sensors 2022, 22, 5630. https://doi.org/10.3390/s22155630
Gu H, Wang L. A High-Detection-Efficiency Optoelectronic Device for Trace Cadmium Detection. Sensors. 2022; 22(15):5630. https://doi.org/10.3390/s22155630
Chicago/Turabian StyleGu, Huangling, and Long Wang. 2022. "A High-Detection-Efficiency Optoelectronic Device for Trace Cadmium Detection" Sensors 22, no. 15: 5630. https://doi.org/10.3390/s22155630