Active Ultrasonic Structural Health Monitoring Enabled by Piezoelectric Direct-Write Transducers and Edge Computing Process
Abstract
:1. Introduction
2. Active Ultrasonic SHM Edge Computing System with DWT Array
3. Materials and Methods
3.1. Design and Fabrication of Linear DWT Array
3.2. Design and Implementation of the Active Ultrasonic SHM Edge Computing Circuit and System
4. Results
4.1. Active Ultrasonic Testing Results
4.2. Performance Enhancement Enabled by Edge-Computing Processes
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kot, P.; Muradov, M.; Gkantou, M.; Kamaris, G.S.; Hashim, K.; Yeboah, D. Recent advancements in non-destructive testing techniques for structural health monitoring. Appl. Sci. 2021, 11, 2750. [Google Scholar] [CrossRef]
- Li, J.; Wang, W. Research on intelligent structural health monitoring system. J. Phys. Conf. Ser. 2021, 2037, 012110. [Google Scholar] [CrossRef]
- Gopinath, V.K.; Ramadoss, R. Review on structural health monitoring for restoration of heritage buildings. Mater. Today Proc. 2021, 43, 1534–1538. [Google Scholar] [CrossRef]
- He, Z.; Li, W.; Salehi, H.; Zhang, H.; Zhou, H.; Jiao, P. Integrated structural health monitoring in bridge engineering. Autom. Constr. 2022, 136, 104168. [Google Scholar] [CrossRef]
- Yu, Y.; Safari, A.; Niu, X.; Drinkwater, B.; Horoshenkov, K.V. Acoustic and ultrasonic techniques for defect detection and condition monitoring in water and sewerage pipes: A review. Appl. Acoust. 2021, 183, 108282. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, H.M.; Kim, S.I.; Lee, H.M. Evaluation of structural integrity of railway bridge using acceleration data and semi-supervised learning approach. Eng. Struct. 2021, 239, 112330. [Google Scholar] [CrossRef]
- Karuskevich, M.; Maslak, T.; Gavrylov, I.; Pejkowski, Ł.; Seyda, J. Structural health monitoring for light aircraft. Procedia Struct. Integr. 2022, 36, 92–99. [Google Scholar] [CrossRef]
- Omer, G.; Kot, P.; Atherton, W.; Muradov, M.; Gkantou, M. A non-destructive electromagnetic sensing technique to determine Chloride level in maritime concrete. Karbala Int. J. Mod. Sci. 2021, 7, 61–71. [Google Scholar] [CrossRef]
- Noel, A.B.; Abdaoui, A.; Elfouly, T.; Ahmed, M.H.; Badawy, A.; Shehata, M.S. Structural health monitoring using wireless sensor networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2017, 19, 1403–1423. [Google Scholar] [CrossRef]
- Rabeek, S.M.; Beibei, H.; Chai, K.T.C. Design of wireless IoT sensor node & platform for water pipeline leak detection. In Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019; pp. 1328–1330. [Google Scholar] [CrossRef]
- Fu, H.; Khodaei, Z.S.; Aliabadi, M.H.F. Synchronized wireless sensors for aircraft structural health monitoring. AIP Conf. Proc. 2020, 2309, 020011. [Google Scholar] [CrossRef]
- Martín, C.; Garrido, D.; Llopis, L.; Rubio, B.; Díaz, M. Facilitating the monitoring and management of structural health in civil infrastructures with an edge/fog/cloud architecture. Comput. Stand. Interfaces 2022, 81, 103600. [Google Scholar] [CrossRef]
- Mishra, M.; Lourenço, P.B.; Ramana, G.V. Structural health monitoring of civil engineering structures by using the internet of things: A review. J. Build. Eng. 2022, 48, 103954. [Google Scholar] [CrossRef]
- Tokognon, C.A.; Gao, B.; Tian, G.Y.; Yan, Y. Structural health monitoring framework based on internet of things: A survey. IEEE Internet Things J. 2017, 4, 619–635. [Google Scholar] [CrossRef]
- Saeedifara, M.; Mansvelder, J.; Mohammadi, R.; Zarouchas, D. Using passive and active acoustic methods for impact damage assessment of composite structures. Compos. Struct. 2019, 226, 111252. [Google Scholar] [CrossRef] [Green Version]
- Madhusudanan, A.; Prabhakaran, S.; Ruba, P.H.; Rufus, E. Structural health monitoring using ultrasonic techniques. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 052029. [Google Scholar] [CrossRef]
- Mei, H.; Haider, M.F.; Joseph, R.; Migot, A.; Giurgiutiu, V. Recent advances in piezoelectric wafer active sensors for structural health monitoring applications. Sensors 2019, 19, 383. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, G.; Fan, D.; Fang, L.; Huang, L. Nonlinear Lamb wave analysis for microdefect identification in mechanical structural health assessment. Measurement 2020, 164, 108026. [Google Scholar] [CrossRef]
- Liu, P.; Hu, Y.; Chen, Y.; Geng, B.; Xu, D. Investigation of novel embedded piezoelectric ultrasonic transducers on crack and corrosion monitoring of steel bar. Constr. Build Mater. 2020, 235, 117495. [Google Scholar] [CrossRef]
- Ramalho, G.M.F.; Lopes, A.M.; Silva, L.F.M. Structural health monitoring of adhesive joints using Lamb waves: A review. Struct. Control Health Monit. 2022, 29, e2849. [Google Scholar] [CrossRef]
- Felice, M.V.; Fan, Z. Sizing of flaws using ultrasonic bulk wave testing: A review. Ultrasonics 2018, 99, 26–42. [Google Scholar] [CrossRef]
- Mitra, M.; Gopalakrishnan, S. Guided wave based structural health monitoring: A review. Smart Mater. Struct. 2016, 25, 053001. [Google Scholar] [CrossRef]
- Ricci, F.; Monaco, E.; Boffa, N.D.; Maio, L.; Memmolo, V. Guided waves for structural health monitoring in composites: A review and implementation strategies. Prog. Aerosp. Sci. 2022, 129, 100790. [Google Scholar] [CrossRef]
- Bombarda, D.; Vitetta, G.M.; Ferrante, G. Rail diagnostics based on ultrasonic guided waves: An overview. Appl. Sci. 2021, 11, 1071. [Google Scholar] [CrossRef]
- Abbas, M.; Shafiee, M. Structural health monitoring (SHM) and determination of surface defects in large metallic structures using ultrasonic guided waves. Sensors 2018, 18, 3958. [Google Scholar] [CrossRef] [Green Version]
- Carrino, S.; Maffezzoli, A.; Scarselli, G. Active SHM for composite pipes using piezoelectric sensors. Mater. Today Proc. 2021, 34, 1–9. [Google Scholar] [CrossRef]
- Dong, T.; Nam, H.K. Cost-effectiveness of structural health monitoring in fuselage maintenance of the civil aviation industry. Aerospace 2018, 5, 97. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, Y.; Li, N.; Wang, X.; Zhang, W. Effect of adhesive debonding on the performance of piezoelectric sensors in structural health monitoring systems. Sensors 2019, 19, 5070. [Google Scholar] [CrossRef] [Green Version]
- Attarian, V.A.; Cegla, F.B.; Cawley, P. Long-term stability of guided wave structural health monitoring using distributed adhesively bonded piezoelectric transducers. Struct. Health Monit. 2014, 13, 265–280. [Google Scholar] [CrossRef]
- Guo, S.; Chen, S.; Zhang, L.; Chen, Y.F.; Yao, K. Plastic strain determination with nonlinear ultrasonic waves using in situ integrated piezoelectric ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 95–101. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, L.; Chen, S.; Tan, C.K.I.; Yao, K. Ultrasonic transducers from thermal sprayed lead-free piezoelectric ceramic coatings for in-situ structural monitoring for pipelines. Smart Mater. Struct. 2019, 28, 075031. [Google Scholar] [CrossRef]
- Philibert, M.; Chen, S.; Wong, V.-K.; Yao, K.; Soutis, C.; Gresil, M. Direct-write piezoelectric transducers on carbon-fiber-reinforced polymer structures for exciting and receiving guided ultrasonic waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2733–2740. [Google Scholar] [CrossRef]
- Yin, J.; Chen, S.; Wong, V.-K.; Yao, K. Thermal sprayed lead-free piezoelectric ceramic coatings for ultrasonic structural health monitoring. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, Early Access. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, S.; Zhang, L.; Yao, K.; Tan, C.Y. Direct-write piezoelectric ultrasonic transducers for non-destructive testing of metal plates. IEEE Sens. J. 2017, 17, 3354–3361. [Google Scholar] [CrossRef]
- Guo, S.; Chen, S.; Zhang, L.; Liew, W.H.; Yao, K. Direct-write piezoelectric ultrasonic transducers for pipe structural health monitoring. NDT Int. 2019, 107, 102131. [Google Scholar] [CrossRef]
- Chen, S.; Wong, Z.Z.; Zhang, L.; Wong, V.-K.; Yao, K.; Safai, M.; Sievers, D.E.; Georgeson, G.E. Monitoring of cracks near fastener holes using direct-write ultrasonic transducers. Eng. Res. Express 2020, 2, 015019. [Google Scholar] [CrossRef]
- Philibert, M.; Chen, S.; Wong, V.-K.; Liew, W.H.; Yao, K.; Soutis, C.; Gresil, M. Direct-write piezoelectric coating transducers in combination with discrete ceramic transducer and laser pulse excitation for ultrasonic impact damage detection on composite plates. Struct. Health Monit. 2022, 21, 1645–1660. [Google Scholar] [CrossRef]
- Wong, V.-K.; Liu, M.; Goh, W.; Chen, S.; Wong, Z.Z.; Cui, F.; Yao, K. Structural health monitoring of fastener hole using ring-design direct-write piezoelectric ultrasonic transducer. Struct. Health Monit. 2022, Online First. [Google Scholar] [CrossRef]
- Abdulkarem, M.; Samsudin, K.; Rokhani, F.Z.; Rasid, M.F.A. Wireless sensor network for structural health monitoring: A contemporary review of technologies, challenges, and future direction. Struct. Health Monit. 2019, 19, 693–735. [Google Scholar] [CrossRef]
- Mustapha, S.; Lu, Y.; Ng, C.-T.; Malinowski, P. Sensor networks for structures health monitoring: Placement, implementations, and challenges—A review. Vibration 2021, 4, 551–585. [Google Scholar] [CrossRef]
- Sofi, A.; Regita, J.J.; Rane, B.; Lau, H.H. Structural health monitoring using wireless smart sensor network—An overview. Mech. Syst. Signal Process 2022, 163, 108113. [Google Scholar] [CrossRef]
- Lee, Y.; Blaauw, D.; Sylvester, D. Ultralow power circuit design for wireless sensor nodes for structural health monitoring. Proc. IEEE 2016, 104, 1529–1546. [Google Scholar] [CrossRef]
- Suryawanshi, P.M.; Shevada, L.K. Tiny sensor node for structural health monitoring. IJRASET 2021, 9, 280–284. [Google Scholar] [CrossRef]
- Yuan, S.; Ren, Y.; Qiu, L.; Mei, H. A multi-response-based wireless impact monitoring network for aircraft composite structures. IEEE Trans. Ind. Electron. 2016, 63, 7712–7722. [Google Scholar] [CrossRef]
- Buckley, T.; Ghosh, B.; Pakrashi, V. Edge structural health monitoring (E-SHM) using low-power wireless sensing. Sensors 2021, 21, 6760. [Google Scholar] [CrossRef]
- Yao, K.; Chen, S.; Lai, S.C.; Yousry, Y.M. Enabling distributed intelligence with ferroelectric multifunctionalities. Adv. Sci. 2022, 9, 2103842. [Google Scholar] [CrossRef]
- Capineri, L.; Bulletti, A. Ultrasonic guided-waves sensors and integrated structural health monitoring systems for impact detection and localization: A review. Sensors 2021, 21, 2929. [Google Scholar] [CrossRef]
- Rabeek, S.M.; Raju, S.; Raja, M.K. Design of RF powered ZigBee sensor node and sub 1GHz RF power transmitter for asset tracking. In Proceedings of the 2021 IEEE Asia-Pacific Microwave Conference (APMC), Brisbane, Australia, 28 November–1 December 2021; pp. 401–403. [Google Scholar] [CrossRef]
Data Generated (kbits) | Data Transfer Time (ms) | Total Energy Consumption (µJ) | |
---|---|---|---|
Without edge-computing | 3640 | 28,437 | 3540.0 |
With edge-computing | 11 | 89 | 15.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, V.-K.; Rabeek, S.M.; Lai, S.C.; Philibert, M.; Lim, D.B.K.; Chen, S.; Raja, M.K.; Yao, K. Active Ultrasonic Structural Health Monitoring Enabled by Piezoelectric Direct-Write Transducers and Edge Computing Process. Sensors 2022, 22, 5724. https://doi.org/10.3390/s22155724
Wong V-K, Rabeek SM, Lai SC, Philibert M, Lim DBK, Chen S, Raja MK, Yao K. Active Ultrasonic Structural Health Monitoring Enabled by Piezoelectric Direct-Write Transducers and Edge Computing Process. Sensors. 2022; 22(15):5724. https://doi.org/10.3390/s22155724
Chicago/Turabian StyleWong, Voon-Kean, Sarbudeen Mohamed Rabeek, Szu Cheng Lai, Marilyne Philibert, David Boon Kiang Lim, Shuting Chen, Muthusamy Kumarasamy Raja, and Kui Yao. 2022. "Active Ultrasonic Structural Health Monitoring Enabled by Piezoelectric Direct-Write Transducers and Edge Computing Process" Sensors 22, no. 15: 5724. https://doi.org/10.3390/s22155724