Local and Context-Attention Adaptive LCA-Net for Thyroid Nodule Segmentation in Ultrasound Images
Abstract
:1. Introduction
- A novel local and context-attention adaptive network (LCA-Net) is proposed for thyroid nodule segmentation in ultrasound images. Compared with the existing state-of-the-art methods of thyroid nodule segmentation, the LCA-Net shows promising segmentation accuracy and strong generalization performance.
- A context-attention module based on transformers is proposed to gain global associative information to the model.
- A backbone module with , convolutions and activation function Mish is designed to more finely extract the local feature details of nodules.
- The nodule adaptive convolutions (NAC) module is embedded into the encoder of the LCA-Net to enhance the robustness of the network to various sizes and positions of nodules.
- A novel loss function is proposed to solve the pixels’ class imbalance problem for thyroid nodule segmentation.
2. Materials and Methods
2.1. LCA-Net Architecture
2.2. Context-Attention Module
2.3. Backbone Module
2.4. Nodule Adaptive Convolution Module
2.5. Loss Function for Pixels Class Imbalance
3. Experiments and Results
3.1. Datasets
3.1.1. TN-SCUI2020
3.1.2. TN3k
3.2. Evaluation Metrics
3.3. Implementation Details
3.4. Comparison to State-of-the-Art Models
3.5. Ablation Studies
3.5.1. Effect of Modules Selection
3.5.2. Effect of Loss Function
3.5.3. Effect of Optimizer Selection
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Song, W.; Li, S.; Liu, J.; Qin, H.; Zhang, B.; Zhang, S.; Hao, A. Multitask cascade convolution neural networks for automatic thyroid nodule detection and recognition. IEEE J. Biomed. Health Inform. 2018, 23, 1215–1224. [Google Scholar] [CrossRef]
- Chen, J.; You, H.; Li, K. A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images. Comput. Methods Programs Biomed. 2020, 185, 105329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lai, H.; Yang, W. Cascade UNet and CH-UNet for thyroid nodule segmentation and benign and malignant classification. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 4–8 October 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 129–134. [Google Scholar]
- Pan, H.; Zhou, Q.; Latecki, L.J. SGUNET: Semantic Guided UNET For Thyroid Nodule Segmentation. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 630–634. [Google Scholar]
- Yang, B.; Yan, M.; Yan, Z.; Zhu, C.; Xu, D.; Dong, F. Segmentation and classification of thyroid follicular neoplasm using cascaded convolutional neural network. Phys. Med. Biol. 2020, 65, 245040. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Chen, G.; Wang, R.; Xie, X.; Mao, M.; Yu, Y.; Chen, F.; Li, G. Multi-Task Learning For Thyroid Nodule Segmentation With Thyroid Region Prior. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 257–261. [Google Scholar]
- Du, W.; Sang, N. An effective method for ultrasound thyroid nodules segmentation. In Proceedings of the 2015 International Symposium on Bioelectronics and Bioinformatics (ISBB), Beijing, China, 14–17 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 207–210. [Google Scholar]
- Zhao, J.; Zheng, W.; Zhang, L.; Tian, H. Segmentation of ultrasound images of thyroid nodule for assisting fine needle aspiration cytology. Health Inf. Sci. Syst. 2013, 1, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keramidas, E.G.; Maroulis, D.; Iakovidis, D.K. TND: A thyroid nodule detection system for analysis of ultrasound images and videos. J. Med. Syst. 2012, 36, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, D.; Zhang, X.; Jin, J.; Shen, Y. Computer aided diagnosis of thyroid nodules based on the devised small-datasets multi-view ensemble learning. Med. Image Anal. 2021, 67, 101819. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wu, F.; Jiang, T.; Zhao, Q.; Kong, D. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1895–1910. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Gao, Y.; Zhou, M.; Metaxas, D.N. UTNet: A hybrid transformer architecture for medical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 September–1 October 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 61–71. [Google Scholar]
- Gu, Z.; Cheng, J.; Fu, H.; Zhou, K.; Hao, H.; Zhao, Y.; Zhang, T.; Gao, S.; Liu, J. CE-Net: Context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Ouahabi, A.; Taleb-Ahmed, A. Deep learning for real-time semantic segmentation: Application in ultrasound imaging. Pattern Recognit. Lett. 2021, 144, 27–34. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Misra, D. Mish: A self regularized non-monotonic activation function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Zhao, Z.; Yang, G. Unsupervised Contrastive Learning of Radiomics and Deep Features for Label-Efficient Tumor Classification. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 September–1 October 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 252–261. [Google Scholar]
- Li, L.; Ma, H. RDCTrans U-Net: A Hybrid Variable Architecture for Liver CT Image Segmentation. Sensors 2022, 22, 2452. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Wang, M.; Zhu, W.; Huang, H.; Shi, F.; Chen, Z.; Wang, L.; Wang, T.; Zhou, Y.; Peng, Y.; et al. Joint segmentation of multi-class hyper-reflective foci in retinal optical coherence tomography images. IEEE Trans. Biomed. Eng. 2021, 69, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Yuan, Y.; Huang, J.; Tan, Y. Optimize TSK fuzzy systems for regression problems: Minibatch gradient descent with regularization, DropRule, and AdaBound (MBGD-RDA). IEEE Trans. Fuzzy Syst. 2019, 28, 1003–1015. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Shen, X.; Bu, F.; Tian, J. Ultrasound image segmentation method for thyroid nodules using ASPP fusion features. IEEE Access 2020, 8, 172457–172466. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 565–571. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Dataset | Model | Dice | PA | Jaccard | Precision | Recall | FPR | FNR |
---|---|---|---|---|---|---|---|---|
TN-SCUI2020 | SGUNet [3] | 84.21% | 97.02% | 74.47% | 0.8346 | 0.8568 | 0.0111 | 0.1328 |
TRFE-Net [5] | 85.03% | 98.04% | 75.48% | 0.8639 | 0.8652 | 0.0093 | 0.2252 | |
RUL-Net [4] | 86.59% | 97.97% | 78.07% | 0.8760 | 0.8812 | 0.0082 | 0.1543 | |
WU-Net [27] | 89.07% | 98.24% | 81.13% | 0.8957 | 0.9082 | 0.0076 | 0.1207 | |
Proposed Method | 90.26% | 98.87% | 82.65% | 0.9068 | 0.9184 | 0.0063 | 0.0955 | |
TN3k | SGUNet [3] | 75.03% | 95.35% | 64.25% | 0.7719 | 0.7936 | 0.0158 | 0.2149 |
TRFE-Net [5] | 77.56% | 96.23% | 67.68% | 0.7838 | 0.8316 | 0.0143 | 0.1915 | |
RUL-Net [4] | 78.08% | 96.72% | 68.05% | 0.8024 | 0.8113 | 0.0175 | 0.1606 | |
WU-Net [27] | 81.27% | 96.82% | 70.54% | 0.7822 | 0.8395 | 0.0195 | 0.1843 | |
Proposed Method | 82.08% | 96.97% | 71.18% | 0.8055 | 0.8534 | 0.0138 | 0.1473 |
Train Dataset | Test Dataset | Model | Dice | PA | Jaccard | Precision | Recall | FPR | FNR |
---|---|---|---|---|---|---|---|---|---|
TN-SCUI2020 | TN3k | SGUNet [3] | 81.37% | 95.24% | 70.06% | 0.8077 | 0.8141 | 0.0167 | 0.2168 |
TRFE-Net [5] | 83.24% | 96.49% | 72.36% | 0.8292 | 0.8201 | 0.0146 | 0.2058 | ||
RUL-Net [4] | 85.21% | 97.08% | 75.55% | 0.8537 | 0.8574 | 0.0113 | 0.1599 | ||
WU-Net [27] | 87.78% | 98.11% | 78.32% | 0.8746 | 0.8603 | 0.0117 | 0.1341 | ||
Proposed Method | 89.82% | 98.77% | 80.97% | 0.8913 | 0.8986 | 0.0085 | 0.1039 | ||
TN3k | TN-SCUI2020 | SGUNet [3] | 71.03% | 94.66% | 62.27% | 0.7478 | 0.7537 | 0.0219 | 0.2836 |
TRFE-Net [5] | 75.22% | 95.93% | 65.09% | 0.7845 | 0.7813 | 0.0163 | 0.2917 | ||
RUL-Net [4] | 75.17% | 95.77% | 65.95% | 0.7773 | 0.7682 | 0.0205 | 0.1829 | ||
WU-Net [27] | 77.32% | 95.41% | 68.21% | 0.7914 | 0.8065 | 0.0218 | 0.2274 | ||
Proposed Method | 78.86% | 96.60% | 69.43% | 0.8128 | 0.8126 | 0.0145 | 0.1621 |
Dataset | Module Construction | Results | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Backbone | Context-Attention | Nodule Adaptive | Dice | PA | Jaccard | Precision | Recall | FPR | FNR | |
TN-SCUI2020 | ✓ | 86.39% | 98.25% | 77.83% | 0.8750 | 0.8809 | 0.0131 | 0.1347 | ||
✓ | 84.53% | 97.65% | 75.51% | 0.8542 | 0.8320 | 0.0138 | 0.1435 | |||
✓ | ✓ | 85.81% | 97.94% | 76.19% | 0.8629 | 0.8695 | 0.0109 | 0.1253 | ||
✓ | ✓ | 87.11% | 98.44% | 78.92% | 0.8838 | 0.8897 | 0.0082 | 0.1266 | ||
✓ | ✓ | 89.22% | 98.64% | 80.89% | 0.8904 | 0.9038 | 0.0074 | 0.1128 | ||
✓ | ✓ | ✓ | 90.26% | 98.87% | 82.65% | 0.9068 | 0.9184 | 0.0063 | 0.0955 |
Dataset | Loss Function | Dice | PA | Jaccard | Precision | Recall | FPR | FNR |
---|---|---|---|---|---|---|---|---|
TN-SCUI2020 | BCE Loss | 83.55% | 98.31% | 74.20% | 0.6035 | 0.9672 | 0.0083 | 0.1496 |
Dice Loss [28] | 86.17% | 98.49% | 77.41% | 0.7419 | 0.9539 | 0.0065 | 0.1321 | |
Proposed Loss | 90.26% | 98.87% | 82.65% | 0.9068 | 0.9184 | 0.0063 | 0.0955 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Z.; Dang, H.; Shi, Y.; Wang, W.; Wang, X.; Ren, S. Local and Context-Attention Adaptive LCA-Net for Thyroid Nodule Segmentation in Ultrasound Images. Sensors 2022, 22, 5984. https://doi.org/10.3390/s22165984
Tao Z, Dang H, Shi Y, Wang W, Wang X, Ren S. Local and Context-Attention Adaptive LCA-Net for Thyroid Nodule Segmentation in Ultrasound Images. Sensors. 2022; 22(16):5984. https://doi.org/10.3390/s22165984
Chicago/Turabian StyleTao, Zhen, Hua Dang, Yueting Shi, Weijiang Wang, Xiaohua Wang, and Shiwei Ren. 2022. "Local and Context-Attention Adaptive LCA-Net for Thyroid Nodule Segmentation in Ultrasound Images" Sensors 22, no. 16: 5984. https://doi.org/10.3390/s22165984
APA StyleTao, Z., Dang, H., Shi, Y., Wang, W., Wang, X., & Ren, S. (2022). Local and Context-Attention Adaptive LCA-Net for Thyroid Nodule Segmentation in Ultrasound Images. Sensors, 22(16), 5984. https://doi.org/10.3390/s22165984