Research Progress in Distributed Acoustic Sensing Techniques
Abstract
:1. Introduction
2. Basic Sensing Principle
2.1. Principle of OTDR Techniques
2.2. Principle of Φ-OTDR Techniques
2.3. Principle of COTDR Techniques
3. Research Progress
3.1. Polarization Fading
3.2. Coherent Fading
3.3. Spatial Resolution
3.4. Frequency Response
3.5. Signal-to-Noise Ratio
3.6. Detection Distance
4. Application
4.1. Perimeter Security
4.2. Earthquake Monitoring
4.3. Energy Exploration
4.4. Underwater Positioning
4.5. Railway Monitoring
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Z. Optical Fiber Communication and Optical Fiber Sensing; Shanghai Science and techniques Literature Publishing: Shanghai, China, 1993; pp. 1–2. [Google Scholar]
- Rogers, A.J. Polarization-optical time domain reflectometry: A technique for the measurement of field distributions. Appl. Optics. 1981, 20, 1060–1074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Guo, Q.; Guo, X.; He, L.; Li, Y. Optical fiber sensing techniques based on Rayleigh backscattering curve. IEEE ITOEC 2022, 6, 2074–2077. [Google Scholar]
- Bao, X.Y.; Chen, L. Recent progress in distributed fiber optic sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, M. Rayleigh backscattering theory for single-mode optical fibers. JOSA 1983, 73, 1175–1180. [Google Scholar] [CrossRef]
- Fan, X.; Yang, G.; Wang, S.; Liu, Q.; He, Z.Y. Distributed fiber-optic vibration sensing based on phase extraction from optical reflectometry. J. Lightwave Technol. 2017, 35, 3281–3288. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, H.; Liu, K.; Liu, T.G. Fully modelling based intrusion discrimination in optical fiber perimeter security system. Opt. Fiber Technol. 2018, 45, 64–70. [Google Scholar] [CrossRef]
- Nishimura, T.; Emoto, K.; Nakahara, H.; Miura, S.; Yamamoto, M.; Sugimura, S.; Ishikawa, A.; Kimura, T. Source location of volcanic earthquakes and subsurface characterization using fiber-optic cable and distributed acoustic sensing system. Sci. Rep. 2021, 11, 6319. [Google Scholar] [CrossRef]
- Lucia, F.D.; Zambrozi, P.J.; Frazatto, F.; Piazzetta, M.; Gobbi, A. Design, fabrication and characterization of SAW pressure sensors for offshore oil and gas exploration. Sens. Actuator. A Phys. 2015, 222, 322–328. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, C.; Zhang, Y.; Zhao, W.A.; Ni, J.S.; Peng, G.D. Non-Intrusive Pipeline Flow Detection Based on Distributed Fiber Turbulent Vibration Sensing. Sens. 2022, 22, 4044. [Google Scholar] [CrossRef]
- Bruni, S.; Goodall, R.; Mei, T.X.; Tsunashima, H. Control and monitoring for railway vehicle dynamics. Veh. Syst. Dyn. 2007, 45, 743–779. [Google Scholar] [CrossRef]
- Barnoski, M.K.; Jensen, S.M. Fiber waveguides: A novel technique for investigating attenuation characteristics. Appl. Opt. 1976, 15, 2112–2115. [Google Scholar] [CrossRef] [PubMed]
- Healey, P.; Malyon, D.J. OTDR in single-mode fiber at 1.5 μm using homodyne detection. Electron. Lett. 1982, 18, 862–863. [Google Scholar] [CrossRef]
- Taylor, H.F.; Lee, C.E. Apparatus and Method for Fiber Optic Intrusion Sensing. U.S. Patent USOO5194847A, 16 March 1993. [Google Scholar]
- Masoudi, A.; Belal, M.; Newson, T.P. A distributed optical fiber dynamic strain sensor based on phase-OTDR. Meas. Sci. Technol. 2013, 24, 085204. [Google Scholar]
- Fang, G.; Xu, T.; Feng, S.; Li, F. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm. J. Lightwave Technol. 2015, 33, 2811–2816. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, X.; Liu, E.; Fu, C.; Zhang, H.; Lu, Z. Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer. Appl. Optics. 2016, 55, 7810–7815. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, H.; Wang, S.; Xie, F.; Huang, Y. Distributed fiber acoustic sensing system based on polarization diversity techniques. Opt. Commun. Tech. 2020, 44, 5–9. [Google Scholar]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Liu, S.; Yu, F.; Hong, R.; Xu, W.; Shao, L.Y.; Wang, F. Advances in phase-sensitive optical time-domain reflectometry. Opto-Electron. Adv. 2022, 5, 1–28. [Google Scholar] [CrossRef]
- He, Z.Y.; Liu, Q. Optical fiber distributed acoustic sensors: A review. J. Lightwave Technol. 2021, 39, 3671–3686. [Google Scholar] [CrossRef]
- Zhou, J.; Pan, Z.; Ye, Q.; Cai, H.W.; Qu, R.; Fang, Z. Characteristics and Explanations of interference fading of a phi-OTDR with a multi-frequency source. J. Lightwave Technol. 2013, 31, 2947–2954. [Google Scholar] [CrossRef]
- Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Goodman, J.W. Statistical Properties of Laser Speckle Patterns. Top. Appl. Phys. 1975, 9, 9–75. [Google Scholar]
- Juarez, J.C.; Maier, E.W.; Choi, K.N.; Taylor, H.F. Distributed fiber-optic intrusion sensor system. J. Lightwave Technol. 2005, 23, 2081–2087. [Google Scholar] [CrossRef]
- Peng, F.; Duan, N.; Rao, Y.J.; Li, J. Real-Time Position and Speed Monitoring of Trains Using Phase-Sensitive OTDR. IEEE Photonics Technol. Lett. 2014, 26, 2055–2057. [Google Scholar] [CrossRef]
- Peng, F.; Wu, H.; Jia, X.; Wang, Z.N. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines. Opt. Express. 2014, 22, 13804–13810. [Google Scholar] [CrossRef]
- Miller, D.; Parker, T.; Kashikar, S.; Todorov, M.; Bostick, T. Vertical Seismic Profiling Using a Fiber-optic Cable as a Distributed Acoustic Sensor. In Proceedings of the 74th EAGE Conference & Exhibition, Copenhagen, Denmark, 4–7 June 2012. [Google Scholar]
- Ren, M.; Lu, P.; Chen, L.; Bao, X.Y. Theoretical and experimental analysis of Φ-OTDR based on polarization diversity detection. IEEE Photonics Technol. Lett. 2016, 28, 697–700. [Google Scholar] [CrossRef]
- Wu, Y.; Bian, P.; Zhao, J.; Ai, X. An interferometric fiber optic sensor for eliminating polarization fading. Chin. J. Sci. Instrument. 2014, 4, 889–893. [Google Scholar]
- Alekseev, A.E.; Vdovenko, V.S.; Gorshkov, B.G. A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal. Laser Phys. 2015, 25, 065101. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Q.; He, Z.Y. Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR. Opt. Express. 2017, 25, 8315–8325. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Liu, T.G.; Fan, C.; Yan, Z.; Liu, D.; Sun, Q.Z. Polarization dependent noise suppression for fiber distributed acoustic sensor with birefringence estimation. CLEO Appl. Tech. Opt. Soc. Am. 2020, 10, 18. [Google Scholar]
- Wu, Y.; Wang, Z.N.; Xiong, J.; Jiang, J.; Rao, Y.J. Bipolar-coding Φ-OTDR with interference fading elimination and frequency drift compensation. J. Lightwave Technol. 2020, 38, 6121–6128. [Google Scholar] [CrossRef]
- Guerrier, S.; Dorize, C.; Awwad, E.; Renaudier, J. Introducing coherent MIMO sensing, a fading-resilient, polarization-independent approach to Φ-OTDR. Opt. Express. 2020, 28, 21081–21094. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Lv, B.; Yang, J.; Wang, Z.; Ye, L.; Ye, Q.; Qu, R.; Cai, H.W. Multicore fiber distributed acoustic sensing. Acta Opt. Sinica. 2021, 41, 0706003. [Google Scholar]
- Ogden, H.M.; Murray, M.J.; Murray, J.B.; Kirkendall, C.; Redding, B. Frequency multiplexed coherent Φ-OTDR. Sci. Rep. 2021, 11, 17921. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Liu, F.; Wang, K. Interference-fading-suppressed pulse-coding Φ-OTDR using spectrum extraction and rotated-vector-sum method. IEEE Photonics Technol. Lett. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, H.; Hu, J. Interference fading suppression in Φ-OTDR using space-division multiplexed probes. Opt. Express. 2021, 29, 15452–15462. [Google Scholar] [CrossRef]
- Cao, C.; Wang, F.; Pan, Y.; Zhang, X.; Chen, X.; Chen, Q.; Lu, J. Suppression of signal fading with multi-wavelength laser in polarization OTDR. IEEE Photonics Technol. Lett. 2017, 29, 1824–1827. [Google Scholar] [CrossRef]
- Cimini, L. Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Cogn. Commun. Netw. 1985, 33, 665–675. [Google Scholar] [CrossRef]
- Wang, X.; Lu, B.; Wang, Z.; Cai, H. Interference-fading-free Φ-OTDR based on differential phase shift pulsing techniques. IEEE Photonics Technol. Lett. 2018, 31, 39–42. [Google Scholar] [CrossRef]
- Kishida, K.; Guzik, A.; Nishiguchi, K.; He, Z. Development of real-time time gated digital (TGD) OFDR method and its performance verification. Sensors 2021, 21, 4865. [Google Scholar] [CrossRef]
- Hu, Y.; Meng, Z.; Zabihi, M.; Zhang, X.; Zhang, Y. Performance enhancement methods for the distributed acoustic sensors based on frequency division multiplexing. Electronics 2019, 8, 617. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Xiong, F.; Zhang, X. A space-division multiplexing method for fading noise suppression in the Φ-OTDR system. Sensors 2021, 21, 1694. [Google Scholar] [CrossRef]
- He, H.; Yan, L.; Qian, H.; He, Z. Suppression of the interference fading in phase-sensitive OTDR with phase-shift transform. J. Lightwave Technol. 2021, 39, 295–302. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, C.; Liu, X.; Wang, C.; Zhao, W.; Peng, G. Optical distributed acoustic sensing based on the phase optical time-domain reflectometry. Infrared Laser Eng. 2017, 46, 321003. [Google Scholar]
- Ma, F.; Song, N.; Wang, X.; Wang, P.; Ma, H.; Wang, Y.; Peng, X.; Yu, J. Fiber-optic distributed acoustic sensor utilizing LiNbO3 straight through waveguide phase modulator. Opt. Express. 2021, 29, 15425–15433. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, X.; Zhang, R.; Zhao, Z.; Kong, M. Using DFB laser self-injection locked to an optical waveguide ring resonator as a light source of Φ-OTDR. Appl. Optics. 2021, 60, 9769–9773. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Q.; Wang, Y.; Li, H.; He, Z.Y. Fiber-optic distributed acoustic sensor based on a chirped pulse and a non-matched filter. Opt. Express. 2019, 27, 29415–29424. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, Y.; Xiong, J.; Wang, Z.N. Distributed fiber birefringence measurement using pulse-compression Φ-OTDR. Photonic Sens. 2021, 11, 402–410. [Google Scholar] [CrossRef]
- Qian, H.; Luo, B.; He, H.; Zhou, Y.; Zou, X.; Pan, W.; Yan, L. Distributed dynamic strain sensing in coherent Φ-OTDR with pulse conversion algorithm. Opt. Lett. 2021, 46, 1668–1671. [Google Scholar] [CrossRef]
- Shan, Y.; Ji, W.; Wang, Q.; Zhang, X. Performance optimization for phase-sensitive OTDR sensing system based on multi-spatial resolution analysis. Sensors 2018, 19, 83. [Google Scholar] [CrossRef]
- Gong, P.; Jiang, X.; Zhou, J.; Xie, L. Wavelength-tunable OTDR for DWDM-PON based on optimized wavelet denoising. IEEE Photonics Technol. Lett. 2021, 33, 1347–1350. [Google Scholar] [CrossRef]
- Li, B.; Guo, X.; Lv, C.G. Double-frequency ultrasonic measurement based on fiber laser sensor. Inf. techniques. 2016, 40, 21–24. [Google Scholar]
- Wang, C.; Shang, Y.; Zhao, W.; Liu, X.; Wang, C.; Yu, H.; Yang, M.; Peng, G. Distributed acoustic sensor using broadband weak FBG array for large temperature tolerance. IEEE Sens. J. 2018, 18, 2796–2800. [Google Scholar] [CrossRef]
- Yan, Y.; Khan, F.N.; Zhou, B.; Lau, A.P.T.; Lu, C.; Guo, C. Forward transmission based ultra-long distributed vibration sensing with wide frequency response. IEEE Sens. J. 2021, 39, 2241–2249. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, S.; Chen, Y.; Ding, Z.; Shan, Y.; Wang, F.; Chen, M.; Zhang, X.; Meng, Z. A visibility enhanced broadband phase-sensitive OTDR based on the UWFBG array and frequency-division-multiplexing. Opt. Fiber Technol. 2019, 53, 101995. [Google Scholar] [CrossRef]
- Liang, G.; Niu, P.; Jiang, J.; Wang, S.; Wang, Y.; Xia, J.; Wang, T.; Ding, Z.; Xu, T.; Liu, T.G. Heterogeneous-frequency-double-pulse chain and weak FBG array for quasi-distributed acoustic sensing with improved response bandwidth. Appl. Optics. 2021, 60, 7740–7744. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Liu, Q.; He, Z.Y. Distributed fiber-optic acoustic sensor for sparse-wideband vibration sensing with time delay sampling. IEEE Sens. J. 2021, 21, 13290–13295. [Google Scholar] [CrossRef]
- Murray, M.J.; Redding, B. Distributed multimode fiber Φ-OTDR sensor using a high-speed camera. OSA Continuum. 2020, 4, 579–588. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Z.; Shan, Y.; Zhang, Y. A high performance distributed optical fiber sensor based on Φ-OTDR for dynamic strain measurement. IEEE Photon. J. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Li, C.; Tang, J.; Jiang, Y.; Yang, M. An enhanced distributed acoustic sensor with large temperature tolerance based on ultra-weak fiber Bragg grating array. IEEE Photon. J. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Yang, M.; Zhan, H.; Cheng, C.; Tang, J. Large-capacity and long-distance distributed acoustic sensing based on an ultra-weak fiber Bragg grating array with an optimized pulsed optical power arrangement. Opt. Express. 2022, 30, 16931–16937. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.; Gu, J.; Cai, H. Practical performance enhancement of DAS by using dense multichannel signal integration. J. Lightwave Technol. 2021, 39, 6348–6354. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, J.; Xu, Y.; Bao, Q.; Jin, B. Optical fiber vibration sensor using least mean square error algorithm. Sensors 2020, 20, 2000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, T.; Ding, Z.; Zhang, X. Classification of interference-fading tolerant Φ-OTDR signal using optimal peak-seeking and machine learning. Chin. Opt. Lett. 2021, 19, 030601. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Z.N.; Zhu, R.C.; Xue, N.; Jiang, J.; Lu, C.; Zhang, B.; Yang, L.; Atubga, D.; Rao, Y.J. Ultra-long-distance hybrid BOTDA/Φ-OTDR. Sensors 2018, 18, 976–984. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Q.; He, Z.Y. 108-km distributed acoustic sensor with 220-pε/√Hz strain resolution and 5-m spatial resolution. J. Lightwave Technol. 2019, 37, 2901276. [Google Scholar] [CrossRef]
- Cedilnik, G.; Lees, G.; Schmidt, P.E.; Herstrøm, S.; Geisler, T. Pushing the reach of fiber distributed acoustic sensing to 125 km without the use of amplifification. IEEE Sens. J. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Uyar, F.; Onat, T.; Unal, C.; Kartaloglu, T.; Ozbay, E.; Ozdur, I. A Direct Detection fiber optic distributed acoustic sensor with a mean SNR of 7.3 dB at 102.7 km. IEEE Sens. J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Masoudi, A.; Brambilla, G.; Beresna, M. 152km-range single-ended distributed acoustic sensor based on in-line optical amplification and micro machined enhanced backscattering fiber. Opt. Lett. 2021, 46, 552–555. [Google Scholar] [CrossRef]
- Hennin, S.; Germana, G.; Garcia, L. Integrated Perimeter Security System. In Proceedings of the 2007 IEEE Conference on Technologies for Homeland Security, Woburn, MA, USA, 16–17 May 2007; pp. 70–75. [Google Scholar]
- Shi, Y.; Li, Y.; Zhao, Y.; Zhuang, Z.; Jiang, T. An easy access method for event recognition of Φ-OTDR sensing system based on transfer learning. J. Lightwave Technol. 2021, 39, 4548–4555. [Google Scholar] [CrossRef]
- Yan, S.; Shang, Y.; Wang, C.; Zhao, W.; Ni, J.S. Mixed intrusion events recognition based on group convolutional neural networks in DAS system. IEEE Sens. J. 2022, 22, 678–684. [Google Scholar] [CrossRef]
- Shi, J.; Cui, K.; Wang, H.; Ren, Z.; Zhu, R. An Interferometric optical fiber perimeter security system based on multi-domain feature fusion and SVM. IEEE Sens. J. 2021, 21, 9194–9202. [Google Scholar] [CrossRef]
- Wang, T.; Gao, S.; Zhang, L.; Li, G.; Li, Y.; Chen, J. Earthquake emergency response framework on campus based on multi-source data monitoring. J. Clean Prod. 2019, 238, 117965. [Google Scholar] [CrossRef]
- Papp, B.; Donno, D.; Martin, J.E.; Hartog, H. A study of the geophysical response of distributed fiber optic acoustic sensors through laboratory-scale experiments. Geophys. Prospect. 2016, 65, 1186–1204. [Google Scholar] [CrossRef]
- Wang, B.; Zeng, X.; Song, Z.; Li, X.; Yang, J. Seismic observation and subsurface structure detection using urban communication fiber optic cables. Sci. Bull. 2021, 66, 2590–2595. [Google Scholar]
- Hudson, T.S.; Baird, A.F.; Kendall, J.M.; Kufner, S.K.; Brisbourne, A.M.; Smith, A.M.; Butcher, A.; Chalari, A.; Clarke, A. Distributed acoustic sensing (DAS) for natural microseismicity studies: A case study from antarctica. JGR Solid Earth. 2021, 126, 2020JB021493. [Google Scholar] [CrossRef]
- Nayak, A.; Ajo-Franklin, J. Distributed acoustic sensing using dark fiber for array detection of regional earthquakes. Seismol. Res. Lett. 2021, 92, 2441–2452. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Exploring the spatial distribution of distributed energy in China. Energy. Econ. 2022, 107, 105828. [Google Scholar] [CrossRef]
- Du, Q.; Wang, C.; Shang, Y.; Liu, X.H.; Zhao, Q.; Cao, B.; Zhao, W.; Ni, J.S.; Wang, C. Fiber optic distributed seismic wave detection system and its deployment optimization research. Shandong Sci. 2017, 30, 7. [Google Scholar]
- Chai, J.; Lei, W.; Du, W.; Yuan, Q.; Zhu, L.; Zhang, D.; Li, H. Experimental study on distributed optical fiber sensing monitoring for ground surface deformation in extra-thick coal seam mining under ultra-thick conglomerate. Opt. Fiber Technol. 2019, 53, 102006. [Google Scholar] [CrossRef]
- Wang, C.; Shang, Y.; Wang, C.; Wang, Y.Y.; Liu, X. Distributed fiber optic acoustic seismic wave exploration techniques. Shandong Sci. 2021, 34, 8. [Google Scholar]
- Wamriew, D.; Pevzner, R.; Maltsev, E.; Pissarenko, D. Deep neural networks for detection and position of microseismic events and velocity model inversion from microseismic data acquired by distributed acoustic sensing array. Sensors 2021, 21, 6627. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Feng, X.; Han, G.; Sui, Y.; Qin, H. EODL: Energy optimized distributed localization method in three-dimensional underwater acoustic sensors networks. Comput. Netw. 2018, 141, 179–188. [Google Scholar] [CrossRef]
- Chen, X.; Zou, N.; Liang, L.; Zhang, X.; Zhang, Y. Submarine cable monitoring system based on enhanced COTDR with simultaneous loss measurement and vibration monitoring ability. Opt. Express. 2021, 29, 13115–13128. [Google Scholar] [CrossRef]
- Rivet, D.; de Cacqueray, B.; Sladen, A. Preliminary assessment of ship detection and trajectory evaluation using distributed acoustic sensing on an optical fiber telecom cable. J. Acoust. Soc. Am. 2021, 149, 2615–2627. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, L.; Wei, H.; Xiao, Z.; Qiu, Z.; Sun, R.; Pang, F.; Wang, T. Underwater acoustic source localization based on phase-sensitive optical time domain reflectometry. Opt. Express. 2021, 29, 12880–12892. [Google Scholar] [CrossRef]
- Xu, X.; Qian, Z.; Bi, Y.; Xue, B.; Wu, H. Underwater dynamic distance measurement using a cross-sampling dual-comb. Opt. Commun. 2022, 517, 128319. [Google Scholar] [CrossRef]
- Milne, D.; Masoudi, A.; Ferro, E.; Watson, G.; Pen, L.L. An analysis of railway track behaviour based on distributed fiber acoustic sensing. Mech. Syst. Signal. Proc. 2020, 142, 106769. [Google Scholar] [CrossRef]
- Palese, J.W.; Zarembski, A.M.; Attoh-Okine, N.O. Methods for aligning near-continuous railway track inspection data. Proc. Inst. Mech. Eng. Part. F-J. Rail Rapid Transit. 2020, 234, 709–721. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Chiengson, C. Railway track inspection and maintenance priorities due to dynamic coupling effects of dipped rails and differential track settlements. Eng. Fail. Anal. 2018, 93, 157–171. [Google Scholar] [CrossRef]
- Wang, S.; Liu, F.; Liu, B. Research on application of deep convolutional network in high-speed railway track inspection based on distributed fiber acoustic sensing. Opt. Commun. 2021, 492, 126981. [Google Scholar] [CrossRef]
- Gao, S.; Dong, H.; Ning, B.; Zhang, Q. Cooperative prescribed performance tracking control for multiple high-speed trains in moving block signaling system. IEEE Trans. Intell. Transp. Syst. 2018, 20, 2740–2749. [Google Scholar] [CrossRef]
- Hill, R.J.; Bond, L.J. Modelling moving-block railway signalling systems using discrete-event simulation. In Proceedings of the 1995 IEEE ASME Joint Railroad Conference, Baltimore, MD, USA, 4–6 April 1995; pp. 105–111. [Google Scholar]
- Kowarik, S.; Hussels, M.T.; Chruscicki, S.; Münzenberger, S.; Lämmerhirt, S.; Pohl, P.; Schubert, M. Fiber optic train monitoring with distributed acoustic sensing: Conventional and neural network data analysis. Sensors 2020, 20, 450. [Google Scholar] [CrossRef]
- Wiesmeyr, C.; Litzenberger, M.; Waser, M.; Papp, A.; Garn, H.; Neunteufel, G.; Döller, H. Real-time train tracking from distributed acoustic sensing data. Appl. Sci. 2020, 10, 448. [Google Scholar] [CrossRef]
- Huang, M.; Han, S.; Narisetty, C. AI-driven applications over telecom networks by distributed fiber optic sensing technologies. SPIE 2022, 12028, 116–121. [Google Scholar]
Published Date | Researchers | Polarization Fading Suppression Scheme | Performance |
---|---|---|---|
CJSI, 2014 | Wu, et al. | Coherent and polarization maintaining light path structure | Interference fringe visibility up to 40% |
LP, 2015 | Alekseev, et al. | Dual-pulse diverse frequency probe signal | |
OE, 2017 | He, et al. | Phase-detection | SNR: 26 dB |
CLEO, 2020 | Sun, et al. | Dynamic birefringence estimation | Suppress about 9.5 dB noise |
JLT, 2020 | Rao, et al. | Bipolar Golay coding | Suppress about 7.1 dB noise |
OE, 2020 | Guerrier, et al. | Coherent-MIMO sensing | Improve sensitivity |
AOS, 2021 | Cai, et al. | Spatial diversity | Suppress about 5.2 dB noise |
SR, 2021 | Ogden, et al. | Frequency multiplexed pulse sequence | Strain noise: 0.6 pε/√Hz |
Published Date | Researchers | Coherent Fading Suppression Scheme | Performance |
---|---|---|---|
IEEE, 2018 | Cai, et al. | DPSP | Sensing distance: 2.4 km |
Elec, 2019 | Zhang, et al. | FDM | Distortion rate: 1.26% |
JLT, 2021 | He, et al. | Phase-shift transform | Standard deviation of differential phase: 0.0224 |
Sens, 2021 | Zhang, et al. | SDM | distortion rate: <2% |
Sens, 2021 | He, et al. | TGD-OFDR | Sensing distance: 80 km |
Published Date | Researchers | Spatial Resolution Enhancement Scheme | Spatial Resolution |
---|---|---|---|
ILE, 2016 | Shang, et al. | Phase carrier demodulation algorithm | 10 m |
OE, 2019 | He, et al. | Chirped pulse | 2 m |
Sens, 2019 | Zhang, et al. | MSR | |
OE, 2021 | Ma, et al. | LiNbO3 straight-through waveguide phase modulator | 10 m |
AO, 2021 | Zhu, et al. | DFB with OWRR | 13 m |
PS, 2021 | Wang, et al. | Pulse-Compression | 0.086 m |
OL, 2021 | Qian, et al. | CPCA | 4 m |
IEEE, 2021 | Gong, et al. | DWDM-PON | 2 m |
Published Date | Researchers | Frequency Response Enhancement Scheme | Frequency Response |
---|---|---|---|
IT, 2016 | Li, et al. | DBR fiber laser sensor | |
IEEE, 2018 | Shang, et al. | Broadband weak FBG array | 1200 Hz @ 400 m |
OFT, 2019 | Zhang, et al. | UWFBG with FDM | 440,000 Hz @ 330 m |
IEEE, 2021 | Yan, et al. | Ultra-long Distributed sensor | 20,000 Hz @ 615,000 m |
AO, 2021 | Liu, et al. | FDM | 2000 Hz @ 70,000 m |
IEEE, 2021 | He, et al. | Time delay sampling with FDM | 47,000 Hz @ 10,000 m |
OSA, 2021 | Murrey, et al. | High-speed camera with time-gated local oscillator | 400 Hz @ 2000 m |
Published Date | Researchers | Signal-to-Noise Ratio Enhancement Scheme | Signal-to-Noise Ratio |
---|---|---|---|
IEEE, 2017 | Zhang, et al. | UWFBGs | 58 dB |
OSA, 2020 | Yang, et al. | UWFBGs | 59.2 dB |
Sens, 2020 | Jin, et al. | Least mean square error algorithm | 42.2 dB |
JLT, 2021 | Cai, et al. | Dense multichannel signal integration | 20 dB |
COL, 2021 | Zhang, et al. | Optimal peak-seeking and machine learning | |
OSA, 2022 | Yang, et al. | UWFBG array with coherent detection | 40.01 dB |
Published Date | Researchers | Detection Distance Enhancement Scheme | Detection Distance |
---|---|---|---|
Sens, 2018 | Fu, et al. | BOTDR + Φ-OTDR | 150.62 km |
JLT, 2019 | He, et al. | Bi-directional distributed Raman amplification | 108 km |
IEEE, 2019 | Cedilnik, et al. | Two cascaded acousto-optic modulators | 102.7 km |
IEEE, 2019 | Uyar, et al. | Low-loss optical fiber | 125 km |
OL, 2021 | Masoudi, et al. | Low-loss enhanced- backscattering fiber | 150 km |
Published Date | Researchers | Methods |
---|---|---|
JLT, 2021 | Shi, et al. | Transfer training recognition algorithm |
IEEE, 2021 | Shi, et al. | Security system with multi-domain feature fusion |
IEEE, 2022 | Ni, et al. | 100 G-Net recognition algorithm |
Published Date | Researchers | Methods |
---|---|---|
SCP, 2019 | Wang, et al. | Perimeter security |
JSE, 2021 | Hudson, et al. | Two-dimensional DAS array |
SRL, 2021 | Avinash, et al. | Dark-fiber DAS array |
Published Date | Researchers | Methods |
---|---|---|
OFT, 2019 | Chai, et al. | Perimeter security |
SDS, 2021 | Wang, et al. | Propose monitoring system |
Sens, 2021 | Wamriew, et al. | Deep learning methods for real-time/semi-real-time data processing |
Published Date | Researchers | Methods |
---|---|---|
JASA, 2021 | Rivet, et al. | Detection of oil tankers at sea |
OE, 2021 | Liu, et al. | Underwater localization system |
OE, 2021 | Zhang, et al. | Submarine cable |
OC, 2022 | Xu, et al. | OFC |
Published Date | Researchers | Methods |
---|---|---|
Sens, 2019 | Kowarik, et al. | Cluster data analysis |
OE, 2020 | Christoph, et al. | Real-time train tracking algorithm |
OC, 2021 | Wang, et al. | Track train detection system |
SPIE, 2022 | Huang, et al. | AI and ML technologies |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, Y.; Sun, M.; Wang, C.; Yang, J.; Du, Y.; Yi, J.; Zhao, W.; Wang, Y.; Zhao, Y.; Ni, J. Research Progress in Distributed Acoustic Sensing Techniques. Sensors 2022, 22, 6060. https://doi.org/10.3390/s22166060
Shang Y, Sun M, Wang C, Yang J, Du Y, Yi J, Zhao W, Wang Y, Zhao Y, Ni J. Research Progress in Distributed Acoustic Sensing Techniques. Sensors. 2022; 22(16):6060. https://doi.org/10.3390/s22166060
Chicago/Turabian StyleShang, Ying, Maocheng Sun, Chen Wang, Jian Yang, Yuankai Du, Jichao Yi, Wenan Zhao, Yingying Wang, Yanjie Zhao, and Jiasheng Ni. 2022. "Research Progress in Distributed Acoustic Sensing Techniques" Sensors 22, no. 16: 6060. https://doi.org/10.3390/s22166060