WiFi Energy-Harvesting Antenna Inspired by the Resonant Magnetic Dipole Metamaterial
Abstract
:1. Introduction
2. Design and Methods
2.1. Metamaterial-Inspired Antenna Design
2.2. MIA Modeling
2.3. System-Level Simulation of the Energy Harvester
3. Results and Discussion
3.1. Open-Circuit Output Characteristics
3.2. Load Effect of the MIA Harvester
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mishu, M.K.; Rokonuzzaman, M.; Pasupuleti, J.; Shakeri, M.; Rahman, K.S.; Binzaid, S.; Tiong, S.K.; Amin, N. An Adaptive TE-PV Hybrid Energy Harvesting System for Self-Powered IoT Sensor Applications. Sensors 2021, 21, 2604. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, K.T.; Agarwal, K.; Nasimuddin; Alphones, A.; Mittra, R.; Karim, M.F. Compact Dual-Band Metamaterial-Based High-Efficiency Rectenna: An Application for Ambient Electromagnetic Energy Harvesting. IEEE Antennas Propag. Mag. 2020, 62, 18–29. [Google Scholar] [CrossRef]
- Sharma, P.K.; Jeong, Y.-S.; Park, J.H. EH-HL: Effective Communication Model by Integrated EH-WSN and Hybrid LiFi/WiFi for IoT. IEEE Internet Things J. 2018, 5, 1719–1726. [Google Scholar] [CrossRef]
- Shafique, K.; Khawaja, B.A.; Khurram, M.D.; Sibtain, S.M.; Siddiqui, Y.; Mustaqim, M.; Chattha, H.T.; Yang, X. Energy Harvesting Using a Low-Cost Rectenna for Internet of Things (IoT) Applications. IEEE Access 2018, 6, 30932–30941. [Google Scholar] [CrossRef]
- Costanzo, S.; Venneri, F. Polarization-Insensitive Fractal Metamaterial Surface for Energy Harvesting in Iot Applications. Electron. 2020, 9, 959. [Google Scholar] [CrossRef]
- Sadowski, S.; Spachos, P. Wireless Technologies for Smart Agricultural Monitoring Using Internet of Things Devices with Energy Harvesting Capabilities. Comput. Electron. Agric. 2020, 172, 105338. [Google Scholar] [CrossRef]
- Ryu, H.; Yoon, H.J.; Kim, S.W. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting. Adv. Mater. 2019, 31, e1802898. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.A.P.; Bazaz, S.R.; Dabiri, S.; Mehrizi, A.A.; Asadnia, M.; Warkiani, M.E.; Wang, Z.L. Advances in MEMS and Microfluidics-Based Energy Harvesting Technologies. Adv. Mater. Technol. 2022, 7, 2101347. [Google Scholar] [CrossRef]
- Fu, X.; Bu, T.; Li, C.; Liu, G.; Zhang, C. Overview of Micro/Nano-Wind Energy Harvesters and Sensors. Nanoscale 2020, 12, 23929–23944. [Google Scholar] [CrossRef]
- Nabavi, S.; Zhang, L. Portable Wind Energy Harvesters for Low-Power Applications: A Survey. Sensors 2016, 16, 1101. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.-Y.; Wang, Z.-H.; Ju, L.; Zhang, C.; Liu, Z.-G.; Tao, L.; Lu, W.-B. Flexible and Wearable Hybrid RF and Solar Energy Harvesting System. IEEE Trans. Antennas Propag. 2022, 70, 2223–2233. [Google Scholar] [CrossRef]
- Guo, L.; Wang, H. Non-Intrusive Movable Energy Harvesting Devices: Materials, Designs, And Their Prospective Uses on Transportation Infrastructures. Renew. Sustain. Energy Rev. 2022, 160, 112340. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, Z.; Wen, N.; Yang, S.; Li, C.; Huang, H.; Cong, T.; Zhang, H.; Pan, L. Novel Wearable Pyrothermoelectric Hybrid Generator for Solar Energy Harvesting. ACS Appl. Mater. Interfaces 2022, 14, 17330–17339. [Google Scholar] [CrossRef] [PubMed]
- Siddique, A.R.M.; Mahmud, S.; Heyst, B.V. A Review of the State of the Science on Wearable Thermoelectric Power Generators (Tegs) And Their Existing Challenges. Renew. Sustain. Energy Rev. 2017, 73, 730–744. [Google Scholar] [CrossRef]
- Akhtar, F.; Rehmani, M.H. Energy Harvesting for Self-Sustainable Wireless Body Area Networks. It Prof. 2017, 19, 32–40. [Google Scholar] [CrossRef]
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless Networks with RF Energy Harvesting: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2015, 17, 757–789. [Google Scholar] [CrossRef]
- Ghazanfari, A.; Tabassum, H.; Hossain, E. Ambient Rf Energy Harvesting in Ultra-Dense Small Cell Networks: Performance and Trade-Offs. IEEE Wirel. Commun. 2016, 23, 38–45. [Google Scholar] [CrossRef]
- Wang, S.; Lin, L.; Wang, Z.L. Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. Nano Lett. 2012, 12, 6339–6346. [Google Scholar] [CrossRef]
- Rome, L.C.; Flynn, L.; Goldman, E.M.; Yoo, T.D. Generating Electricity While Walking with Loads. Science 2005, 309, 1725–1728. [Google Scholar] [CrossRef]
- Naktong, W.; Ruengwaree, A.; Fhafhiem, N.; Krachodnok, P. Resonator Rectenna Design Based on Metamaterials for Low-RF Energy Harvesting. Comput. Mater. Contin. 2021, 68, 1731–1750. [Google Scholar] [CrossRef]
- Zhang, X.; Grajal, J.; Vazquez-Roy, J.L.; Radhakrishna, U.; Wang, X.; Chern, W.; Zhou, L.; Lin, Y.; Shen, P.C.; Ji, X.; et al. Two-Dimensional Mos2-Enabled Flexible Rectenna for Wi-Fi-Band Wireless Energy Harvesting. Nature 2019, 566, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Le, M.T.; Ngo, V.D.; Nguyen, T.T.; Nguyen, Q.C. Dual-Band Ambient Energy Harvesting Systems Based on Metamaterials for Self-Powered Indoorwireless Sensor Nodes. Int. J. Microw. Wirel. Technol. 2021, 1–9. [Google Scholar] [CrossRef]
- Hucheng, S.; Yong-xin, G.; Miao, H.; Zheng, Z. Design of a High-Efficiency 2.45-GHz Rectenna for Low-Input-Power Energy Harvesting. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 929–932. [Google Scholar] [CrossRef]
- Chandravanshi, S.; Katare, K.K.; Akhtar, M.J. A Flexible Dual-Band Rectenna with Full Azimuth Coverage. IEEE Access 2021, 9, 27476–27484. [Google Scholar] [CrossRef]
- Shi, Y.; Jing, J.; Fan, Y.; Yang, L.; Li, Y.; Wang, M. A Novel Compact Broadband Rectenna for Ambient RF Energy Harvesting. AEU Int. J. Electron. Commun. 2018, 95, 264–270. [Google Scholar] [CrossRef]
- Sharma, R.; Mishra, R.; Ngo, T.; Guo, Y.X.; Fukami, S.; Sato, H.; Ohno, H.; Yang, H. Electrically Connected Spin-Torque Oscillators Array for 2.4 Ghz Wifi Band Transmission and Energy Harvesting. Nat. Commun. 2021, 12, 2924. [Google Scholar] [CrossRef]
- McSpadden, J.O.; Fan, L.; Chang, K. Design and Experiments of a High-Conversion-Efficiency 5.8-Ghz Rectenna. IEEE Trans. Microw. Theory Tech. 1998, 46, 2053–2060. [Google Scholar] [CrossRef]
- Khang, S.T.; Yu, J.W.; Lee, W.S. Compact Folded Dipole Rectenna With RF-Based Energy Harvesting for Iot Smart Sensors. Electron. Lett. 2015, 51, 926–928. [Google Scholar] [CrossRef]
- Luo, Y.; Pu, L.; Wang, G.; Zhao, Y. RF Energy Harvesting Wireless Communications: RF Environment, Device Hardware and Practical Issues. Sensors 2019, 19, 3010. [Google Scholar] [CrossRef] [PubMed]
- Kadir, E.; Hu, A. A Power Processing Circuit for Indoor Wi-Fi Energy Harvesting for Ultra-Low Power Wireless Sensors. Appl. Sci. 2017, 7, 827. [Google Scholar] [CrossRef] [Green Version]
- Valenta, C.R.; Durgin, G.D. Harvesting Wireless Power. IEEE Microw. Mag. 2014, 15, 108–120. [Google Scholar] [CrossRef]
- Awais, Q.; Jin, Y.; Chattha, H.T.; Jamil, M.; Qiang, H.; Khawaja, B.A. A Compact Rectenna System With High Conversion Efficiency for Wireless Energy Harvesting. IEEE Access 2018, 6, 35857–35866. [Google Scholar] [CrossRef]
- Assimonis, S.D.; Fusco, V.; Georgiadis, A.; Samaras, T. Efficient and Sensitive Electrically Small Rectenna for Ultra-Low Power RF Energy Harvesting. Sci. Rep. 2018, 8, 15038. [Google Scholar] [CrossRef]
- Donchev, E.; Pang, J.S.; Gammon, P.M.; Centeno, A.; Xie, F.; Petrov, P.K.; Breeze, J.D.; Ryan, M.P.; Riley, D.J.; McN, N. The Rectenna Device: From Theory to Practice (a Review). MRS Energy Sustain. 2014, 1, 1. [Google Scholar] [CrossRef]
- Ullah, M.A.; Keshavarz, R.; Abolhasan, M.; Lipman, J.; Esselle, K.P.; Shariati, N. A Review on Antenna Technologies for Ambient RF Energy Harvesting and Wireless Power Transfer: Designs, Challenges and Applications. IEEE Access 2022, 10, 17231–17267. [Google Scholar] [CrossRef]
- Zhu, N.; Ziolkowski, R.W.; Xin, H. A Metamaterial-Inspired, Electrically Small Rectenna for High-Efficiency, Low Power Harvesting and Scavenging at the Global Positioning System L1 Frequency. Appl. Phys. Lett. 2011, 99, 114101. [Google Scholar] [CrossRef]
- Oumbé Tékam, G.T.; Ginis, V.; Danckaert, J.; Tassin, P. Designing an Efficient Rectifying Cut-Wire Metasurface for Electromagnetic Energy Harvesting. Appl. Phys. Lett. 2017, 110, 083901. [Google Scholar] [CrossRef]
- Alavikia, B.; Almoneef, T.S.; Ramahi, O.M. Electromagnetic Energy Harvesting Using Complementary Split-Ring Resonators. Appl. Phys. Lett. 2014, 104, 163903. [Google Scholar] [CrossRef]
- Ramahi, O.M.; Almoneef, T.S.; AlShareef, M.; Boybay, M.S. Metamaterial Particles for Electromagnetic Energy Harvesting. Appl. Phys. Lett. 2012, 101, 163903. [Google Scholar] [CrossRef]
- Hawkes, A.M.; Katko, A.R.; Cummer, S.A. A Microwave Metamaterial with Integrated Power Harvesting Functionality. Appl. Phys. Lett. 2013, 103, 163901. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Park, H.; Kim, S.Y.; Park, S.M.; Kim, D.H.; Lee, H. Wireless-Powered VOCs Sensor Based on Energy-Harvesting Metamaterial. Adv. Electron. Mater. 2021, 7, 2001240. [Google Scholar] [CrossRef]
- Padilla, W.J.; Aronsson, M.T.; Highstrete, C.; Lee, M.; Taylor, A.J.; Averitt, R.D. Electrically Resonant Terahertz Metamaterials: Theoretical and Experimental Investigations. Phys. Rev. B 2007, 75, 041102. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Smith, D.R. Electric-Field-Coupled Resonators for Negative Permittivity Metamaterials. Appl. Phys. Lett. 2006, 88, 041109. [Google Scholar] [CrossRef]
- Zhao, X.; Duan, G.; Li, A.; Chen, C.; Zhang, X. Integrating Microsystems with Metamaterials Towards Metadevices. Microsyst. Nanoeng. 2019, 5, 5. [Google Scholar] [CrossRef]
- Chang, Y.; Wei, J.; Lee, C. Metamaterials—from Fundamentals and MEMS Tuning Mechanisms to Applications. Nanophotonics 2020, 9, 3049–3070. [Google Scholar] [CrossRef]
- Yen, T.J.; Padilla, W.J.; Fang, N.; Vier, D.C.; Smith, D.R.; Pendry, J.B.; Basov, D.N.; Zhang, X. Terahertz Magnetic Response from Artificial Materials. Science 2004, 303, 1494–1496. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Vier, D.C.; Kroll, N.; Schultz, S. Direct Calculation of Permeability and Permittivity for a Left-Handed Metamaterial. Appl. Phys. Lett. 2000, 77, 2246–2248. [Google Scholar] [CrossRef]
- Lee, W.; Jung, Y.; Jung, H.; Seo, C.; Choo, H.; Lee, H. Wireless-Powered Chemical Sensor by 2.4 GHz Wi-Fi Energy-Harvesting Metamaterial. Micromachines 2018, 10, 12. [Google Scholar] [CrossRef]
- Alici, K.B.; Ozbay, E. Electrically Small Split Ring Resonator Antennas. J. Appl. Phys. 2007, 101, 083104. [Google Scholar] [CrossRef]
- Ekmekci, E.; Strikwerda, A.C.; Fan, K.; Keiser, G.; Zhang, X.; Turhan-Sayan, G.; Averitt, R.D. Frequency Tunable Terahertz Metamaterials Using Broadside Coupled Split-Ring Resonators. Phys. Rev. B 2011, 83, 193103. [Google Scholar] [CrossRef] [Green Version]
- Powell, D.A.; Lapine, M.; Gorkunov, M.V.; Shadrivov, I.V.; Kivshar, Y.S. Metamaterial Tuning by Manipulation of Near-Field Interaction. Phys. Rev. B 2010, 82, 155128. [Google Scholar] [CrossRef]
- Zhao, X.; Fan, K.; Zhang, J.; Keiser, G.R.; Duan, G.; Averitt, R.D.; Zhang, X. Voltage-Tunable Dual-Layer Terahertz Metamaterials. Microsyst. Nanoeng. 2016, 2, 16025. [Google Scholar] [CrossRef] [PubMed]
- Seren, H.R.; Zhao, X.; Chen, C.; Wang, C.; Zhang, X. Enabling a Microfluidic RFID Readout System via Miniaturization and Integration. J. Microelectromechanical Syst. 2015, 24, 395–403. [Google Scholar] [CrossRef]
- Bueno, M.A.; Assis, A.K.T. A New Method for Inductance Calculations. J. Phys. D Appl. Phys. 1995, 28, 1802–1806. [Google Scholar] [CrossRef]
- Duan, G.; Zhao, X.; Zhang, X. A Magnetically Coupled Communication and Charging Platform for Microsensors. J. Microelectromechanical Syst. 2017, 26, 1099–1109. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Q.; Rifat, A.A.; Raj, V.; Komar, A.; Han, J.; Rahmani, M.; Hattori, H.T.; Neshev, D.; Powell, D.A.; et al. Deeply Subwavelength Metasurface Resonators for Terahertz Wavefront Manipulation. Adv. Opt. Mater. 2019, 7, 1900736. [Google Scholar] [CrossRef]
- Dickson, J.F. On-Chip High-Voltage Generation in Mnos Integrated-Circuits Using an Improved Voltage Multiplier Technique. IEEE J. Solid-State Circuits 1976, 11, 374–378. [Google Scholar] [CrossRef]
- Kim, B.H.; Li, K.; Kim, J.T.; Park, Y.; Jang, H.; Wang, X.; Xie, Z.; Won, S.M.; Yoon, H.J.; Lee, G.; et al. Three-Dimensional Electronic Microfliers Inspired by Wind-Dispersed Seeds. Nature 2021, 597, 503–510. [Google Scholar] [CrossRef]
- Iyer, V.; Gaensbauer, H.; Daniel, T.L.; Gollakota, S. Wind Dispersal of Battery-Free Wireless Devices. Nature 2022, 603, 427–433. [Google Scholar] [CrossRef]
Parameters | Symbol | Value |
---|---|---|
Length of PCB board | l1 | 14 mm |
Length of SRR | l2 | 10.5 mm |
Line width of SRR | w | 0.5 mm |
Gap of SRR | gap | 0.8 mm |
Thickness of copper wire | t1 | 50 μm |
Thickness of FR4 substrate | t2 | 3.1 mm |
Authors | Frequency | Size | Output Voltage (Transmit Power/Distance) |
---|---|---|---|
Hawkes et al. [40] | 900 MHz | >1600 mm2 (5 × 1) | <2.5 V (15 dBm/NA) |
Zhang et al. [21] | 5.9 GHz | >1900 mm2 | 250 mV (3 dBm/2.5 cm) |
Sun et al. [23] | 2.45 GHz | 6960 mm2 | <2.5 V (5 dBm/NA) |
Lee et al. [41] | 2.4 GHz | >300 mm2 | 2 V (Mobile Hotpot/5 cm) |
Chandravanshi et al. [24] | 2.45 GHz | 6440 mm2 | 0.98 V (20 dBm/20 cm) |
This work | 2.425 GHz | 196 mm2 | 0.494 V (9 dBm/2 cm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Zhao, X.; Zhang, L.; Mei, Z.; Zhong, H.; You, R.; Lu, W.; You, Z.; Zhao, J. WiFi Energy-Harvesting Antenna Inspired by the Resonant Magnetic Dipole Metamaterial. Sensors 2022, 22, 6523. https://doi.org/10.3390/s22176523
Sun Z, Zhao X, Zhang L, Mei Z, Zhong H, You R, Lu W, You Z, Zhao J. WiFi Energy-Harvesting Antenna Inspired by the Resonant Magnetic Dipole Metamaterial. Sensors. 2022; 22(17):6523. https://doi.org/10.3390/s22176523
Chicago/Turabian StyleSun, Zhenci, Xiaoguang Zhao, Lingyun Zhang, Ziqi Mei, Han Zhong, Rui You, Wenshuai Lu, Zheng You, and Jiahao Zhao. 2022. "WiFi Energy-Harvesting Antenna Inspired by the Resonant Magnetic Dipole Metamaterial" Sensors 22, no. 17: 6523. https://doi.org/10.3390/s22176523