Motion-Based Object Location on a Smart Image Sensor Using On-Pixel Memory
Abstract
:1. Introduction
2. Related Work
3. Object-Location Algorithm
4. SIS Architecture
4.1. Smart Pixel
4.2. A-THR
4.3. Digital Coprocessor
5. Results
5.1. Smart Pixel and A-THR Implementation
5.2. Simulation Results
5.3. FPGA Implementation of the Digital Coprocessor
5.4. SIS Object Location Performance
5.5. Comparison to Related Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanil, N.; Venkat, P.A.N.; Rakesh, V.; Mallapur, R.; Ahmed, M.R. Deep Learning Techniques for Obstacle Detection and Avoidance in Driverless Cars. In Proceedings of the 2020 International Conference on Artificial Intelligence and Signal Processing (AISP), Amaravati, India, 10–12 January 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Thakurdesai, H.M.; Aghav, J.V. Computer Vision Based Position and Speed Estimation for Accident Avoidance in Driverless Cars. In ICT Systems and Sustainability; Tuba, M., Akashe, S., Joshi, A., Eds.; Springer: Singapore, 2020; Volume 1077, pp. 435–443. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, J.; Deng, X.; Xiao, C.; An, W. Infrared Pedestrian Detection Based on Attention Mechanism. J. Phys. Conf. Ser. 2020, 1634, 12032. [Google Scholar] [CrossRef]
- Kwon, H.J.; Lee, S.H. Visible and Near-Infrared Image Acquisition and Fusion for Night Surveillance. Chemosensors 2021, 9, 75. [Google Scholar] [CrossRef]
- Salhaoui, M.; Molina-Molina, J.C.; Guerrero-González, A.; Arioua, M.; Ortiz, F.J. Autonomous Underwater Monitoring System for Detecting Life on the Seabed by Means of Computer Vision Cloud Services. Remote Sens. 2020, 12, 1981. [Google Scholar] [CrossRef]
- Kakani, V.; Nguyen, V.H.; Kumar, B.P.; Kim, H.; Pasupuleti, V.R. A critical review on computer vision and artificial intelligence in food industry. J. Agric. Food Res. 2020, 2, 100033. [Google Scholar] [CrossRef]
- Khan, W.; Hussain, A.; Kuru, K.; Al-askar, H. Pupil Localisation and Eye Centre Estimation Using Machine Learning and Computer Vision. Sensors 2020, 20, 3785. [Google Scholar] [CrossRef]
- Sikander, G.; Anwar, S. Driver Fatigue Detection Systems: A Review. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2339–2352. [Google Scholar] [CrossRef]
- Arnold, E.; Al-Jarrah, O.Y.; Dianati, M.; Fallah, S.; Oxtoby, D.; Mouzakitis, A. A Survey on 3D Object Detection Methods for Autonomous Driving Applications. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3782–3795. [Google Scholar] [CrossRef]
- Wang, Y.; Fathi, A.; Kundu, A.; Ross, D.A.; Pantofaru, C.; Funkhouser, T.; Solomon, J. Pillar-Based Object Detection for Autonomous Driving. In Computer Vision—ECCV 2020; Lecture Notes in Computer Science; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 12367, pp. 18–34. [Google Scholar] [CrossRef]
- Zhiqiang, W.; Jun, L. A review of object detection based on convolutional neural network. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 11104–11109. [Google Scholar] [CrossRef]
- Zeng, D.; Zhu, M. Multiscale Fully Convolutional Network for Foreground Object Detection in Infrared Videos. IEEE Geosci. Remote Sens. Lett. 2018, 15, 617–621. [Google Scholar] [CrossRef]
- Baek, I.; Chen, W.; Gumparthi Venkat, A.C.; Rajkumar, R.R. Practical Object Detection Using Thermal Infrared Image Sensors. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops), Nagoya, Japan, 11–17 July 2021; pp. 372–379. [Google Scholar] [CrossRef]
- Woźniak, M.; Połap, D. Object detection and recognition via clustered features. Neurocomputing 2018, 320, 76–84. [Google Scholar] [CrossRef]
- Gao, F.; Wang, C.; Li, C. A Combined Object Detection Method With Application to Pedestrian Detection. IEEE Access 2020, 8, 194457–194465. [Google Scholar] [CrossRef]
- Wang, H.; Wang, P.; Qian, X. MPNET: An End-to-End Deep Neural Network for Object Detection in Surveillance Video. IEEE Access 2018, 6, 30296–30308. [Google Scholar] [CrossRef]
- Morikawa, C.; Kobayashi, M.; Satoh, M.; Kuroda, Y.; Inomata, T.; Matsuo, H.; Miura, T.; Hilaga, M. Image and video processing on mobile devices: A survey. Vis. Comput. 2021, 37, 2931–2949. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, H.; Gruteser, M. Edge Assisted Real-time Object Detection for Mobile Augmented Reality. In Proceedings of the 25th Annual International Conference on Mobile Computing and Networking, Los Cabos, Mexico, 21–25 October 2019; pp. 1–16. [Google Scholar] [CrossRef]
- Wang, R.J.; Li, X.; Ling, C.X. Pelee: A Real-Time Object Detection System on Mobile Devices. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2018. [Google Scholar] [CrossRef]
- Chen, B.; Ghiasi, G.; Liu, H.; Lin, T.Y.; Kalenichenko, D.; Adam, H.; Le, Q.V. MnasFPN: Learning Latency-Aware Pyramid Architecture for Object Detection on Mobile Devices. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 13604–13613. [Google Scholar] [CrossRef]
- Mayo, R.N.; Ranganathan, P. Energy Consumption in Mobile Devices: Why Future Systems Need Requirements–Aware Energy Scale-Down. In Power-Aware Computer Systems; Falsafi, B., VijayKumar, T.N., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3164, pp. 26–40. [Google Scholar] [CrossRef]
- HajiRassouliha, A.; Taberner, A.J.; Nash, M.P.; Nielsen, P.M. Suitability of recent hardware accelerators (DSPs, FPGAs, and GPUs) for computer vision and image processing algorithms. Signal Process. Image Commun. 2018, 68, 101–119. [Google Scholar] [CrossRef]
- Khairy, M.; Wassal, A.G.; Zahran, M. A survey of architectural approaches for improving GPGPU performance, programmability and heterogeneity. J. Parallel Distrib. Comput. 2019, 127, 65–88. [Google Scholar] [CrossRef]
- Yin, X.; Chen, L.; Zhang, X.; Gao, Z. Object Detection Implementation and Optimization on Embedded GPU System. In Proceedings of the 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Valencia, Spain, 6–8 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, Y.; Yang, X.; Du, M.; Li, X. Computer vision algorithms and hardware implementations: A survey. Integration 2019, 69, 309–320. [Google Scholar] [CrossRef]
- Zaman, K.S.; Reaz, M.B.I.; Ali, S.H.M.; Bakar, A.A.A.; Chowdhury, M.E.H. Custom Hardware Architectures for Deep Learning on Portable Devices: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–21. [Google Scholar] [CrossRef]
- Ohta, J. Smart CMOS Image Sensors and Applications, 2nd ed.; Optical Science and Engineering; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Hasler, J. Analog Architecture Complexity Theory Empowering Ultra-Low Power Configurable Analog and Mixed Mode SoC Systems. J. Low Power Electron. Appl. 2019, 9, 4. [Google Scholar] [CrossRef]
- Zhong, X.; Yu, Q.; Bermak, A.; Tsui, C.Y.; Law, M.K. A 2pJ/pixel/direction MIMO processing based CMOS image sensor for omnidirectional local binary pattern extraction and edge detection. In Proceedings of the 2018 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 18–22 June 2018; pp. 247–248. [Google Scholar]
- Choi, J.; Park, S.; Cho, J.; Yoon, E. A 3.4-μW Object-Adaptive CMOS Image Sensor With Embedded Feature Extraction Algorithm for Motion-Triggered Object-of-Interest Imaging. IEEE J.-Solid-State Circuits 2014, 49, 289–300. [Google Scholar] [CrossRef]
- Hsu, T.H.; Chen, Y.R.; Liu, R.S.; Lo, C.C.; Tang, K.T.; Chang, M.F.; Hsieh, C.C. A 0.5-V Real-Time Computational CMOS Image Sensor With Programmable Kernel for Feature Extraction. IEEE J.-Solid-State Circuits 2020, 56, 1588–1596. [Google Scholar] [CrossRef]
- Massari, N.; Gottardi, M. A 100 dB Dynamic-Range CMOS Vision Sensor With Programmable Image Processing and Global Feature Extraction. IEEE J.-Solid-State Circuits 2007, 42, 647–657. [Google Scholar] [CrossRef]
- Jin, M.; Noh, H.; Song, M.; Kim, S.Y. Design of an Edge-Detection CMOS Image Sensor with Built-in Mask Circuits. Sensors 2020, 20, 3649. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Hsieh, C.C. A 0.5V 34.4uW 14.28kfps 105dB smart image sensor with array-level analog signal processing. In Proceedings of the 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), Singapore, 11–13 November 2013; pp. 97–100. [Google Scholar] [CrossRef]
- Kim, C.; Bong, K.; Hong, I.; Lee, K.; Choi, S.; Yoo, H.J. An ultra-low-power and mixed-mode event-driven face detection SoC for always-on mobile applications. In Proceedings of the ESSCIRC 2017—43rd IEEE European Solid State Circuits Conference, Leuven, Belgium, 11–14 September 2017; pp. 255–258. [Google Scholar] [CrossRef]
- Bong, K.; Choi, S.; Kim, C.; Han, D.; Yoo, H.J. A Low-Power Convolutional Neural Network Face Recognition Processor and a CIS Integrated With Always-on Face Detector. IEEE J.-Solid-State Circuits 2018, 53, 115–123. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, C.; Kim, K.; Yoo, H.J. An Ultra-Low-Power Analog-Digital Hybrid CNN Face Recognition Processor Integrated with a CIS for Always-on Mobile Devices. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Yang, J.; Shi, C.; Cao, Z.; Han, Y.; Liu, L.; Wu, N. Smart image sensing system. In Proceedings of the 2013 IEEE SENSORS, Baltimore, MD, USA, 3–6 November 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.; Son, Y.; Kim, S.Y. Design of an Always-On Image Sensor Using an Analog Lightweight Convolutional Neural Network. Sensors 2020, 20, 3101. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Park, S.; Park, S.Y.; Cho, J.; Yoon, E. A 272.49 pJ/pixel CMOS image sensor with embedded object detection and bio-inspired 2D optic flow generation for nano-air-vehicle navigation. In Proceedings of the 2017 Symposium on VLSI Circuits, Kyoto, Japan, 5–8 June 2017; pp. C294–C295. [Google Scholar]
- Xie, S.; Prouza, A.A.; Theuwissen, A. A CMOS-Imager-Pixel-Based Temperature Sensor for Dark Current Compensation. IEEE Trans. Circuits Syst. Ii Express Briefs 2020, 67, 255–259. [Google Scholar] [CrossRef]
- Zhou, T.; Zhao, J.; He, Y.; Jiang, B.; Su, Y. A Readout Integrated Circuit (ROIC) employing self-adaptive background current compensation technique for Infrared Focal Plane Array (IRFPA). Infrared Phys. Technol. 2018, 90, 122–132. [Google Scholar] [CrossRef]
- Valenzuela, W.; Soto, J.E.; Zarkesh-Ha, P.; Figueroa, M. Face Recognition on a Smart Image Sensor Using Local Gradients. Sensors 2021, 21, 2901. [Google Scholar] [CrossRef]
- Sanchez-Fernandez, A.J.; Romero, L.F.; Peralta, D.; Medina-Pérez, M.A.; Saeys, Y.; Herrera, F.; Tabik, S. Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems. IEEE Access 2020, 8, 124236–124253. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Lei, Z.; Li, S.Z. Faceboxes: A CPU real-time and accurate unconstrained face detector. Neurocomputing 2019, 364, 297–309. [Google Scholar] [CrossRef]
- Zhao, R.; Niu, X.; Wu, Y.; Luk, W.; Liu, Q. Optimizing CNN-Based Object Detection Algorithms on Embedded FPGA Platforms. In Applied Reconfigurable Computing; Lecture Notes in Computer Science; Wong, S., Beck, A.C., Bertels, K., Carro, L., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 10216, pp. 255–267. [Google Scholar] [CrossRef]
- Fan, H.; Liu, S.; Ferianc, M.; Ng, H.C.; Que, Z.; Liu, S.; Niu, X.; Luk, W. A Real-Time Object Detection Accelerator with Compressed SSDLite on FPGA. In Proceedings of the 2018 International Conference on Field-Programmable Technology (FPT), Okinawa, Japan, 10–14 December 2018; pp. 14–21. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Nguyen, T.N.; Kim, H.; Lee, H.J. A High-Throughput and Power-Efficient FPGA Implementation of YOLO CNN for Object Detection. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2019, 27, 1861–1873. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, V.; Rani, A. Implementation of CNN on Zynq based FPGA for Real-time Object Detection. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, X.; Chen, H.; Liu, W. FPGA Implementation for CNN-Based Optical Remote Sensing Object Detection. Electronics 2021, 10, 282. [Google Scholar] [CrossRef]
- Long, X.; Hu, S.; Hu, Y.; Gu, Q.; Ishii, I. An FPGA-Based Ultra-High-Speed Object Detection Algorithm with Multi-Frame Information Fusion. Sensors 2019, 19, 3707. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, H.; Yonekawa, H.; Sato, S. An object detector based on multiscale sliding window search using a fully pipelined binarized CNN on an FPGA. In Proceedings of the 2017 International Conference on Field Programmable Technology (ICFPT), Melbourne, VIC, Canada, 11–13 December 2017; pp. 168–175. [Google Scholar] [CrossRef]
- Hameed, R.; Qadeer, W.; Wachs, M.; Azizi, O.; Solomatnikov, A.; Lee, B.C.; Richardson, S.; Kozyrakis, C.; Horowitz, M. Understanding sources of inefficiency in general-purpose chips. In Proceedings of the 37th Annual International Symposium on Computer Architecture, Saint-Malo, France, 19–23 June 2010; pp. 37–47. [Google Scholar]
- Zarkesh-Ha, P. An intelligent readout circuit for infrared multispectral remote sensing. In Proceedings of the 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), College Station, TX, USA, 3–6 August 2014; pp. 153–156. [Google Scholar]
- Gottardi, M.; Lecca, M. A 64 × 64 Pixel Vision Sensor for Local Binary Pattern Computation. IEEE Trans. Circuits Syst. Regul. Pap. 2019, 66, 1831–1839. [Google Scholar] [CrossRef]
- Young, C.; Omid-Zohoor, A.; Lajevardi, P.; Murmann, B. A Data-Compressive 1.5/2.75-bit Log-Gradient QVGA Image Sensor With Multi-Scale Readout for Always-On Object Detection. IEEE J.-Solid-State Circuits 2019, 54, 2932–2946. [Google Scholar] [CrossRef]
- Shin, M.S.; Kim, J.B.; Kim, M.K.; Jo, Y.R.; Kwon, O.K. A 1.92-megapixel CMOS image sensor with column-parallel low-power and area-efficient SA-ADCs. IEEE Trans. Electron Dev. 2012, 59, 1693–1700. [Google Scholar] [CrossRef]
- Keivani, A.; Tapamo, J.R.; Ghayoor, F. Motion-based moving object detection and tracking using automatic K-means. In Proceedings of the 2017 IEEE AFRICON, Cape Town, South Africa, 18–20 September 2017; pp. 32–37. [Google Scholar] [CrossRef]
- Zhan, C.; Duan, X.; Xu, S.; Song, Z.; Luo, M. An Improved Moving Object Detection Algorithm Based on Frame Difference and Edge Detection. In Proceedings of the 4th International Conference on Image and Graphics (ICIG 2007), Sichuan, China, 22–24 August 2007; pp. 519–523. [Google Scholar] [CrossRef]
- Bhanu, B.; Han, J. Kinematic-based human motion analysis in infrared sequences. In Proceedings of the 6th IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002), Orlando, FL, USA, 3–4 December 2002; pp. 208–212. [Google Scholar] [CrossRef]
- Yin, J.; Liu, L.; Li, H.; Liu, Q. The infrared moving object detection and security detection related algorithms based on W4 and frame difference. Infrared Phys. Technol. 2016, 77, 302–315. [Google Scholar] [CrossRef]
- He, L.; Ren, X.; Gao, Q.; Zhao, X.; Yao, B.; Chao, Y. The connected-component labeling problem: A review of state-of-the-art algorithms. Pattern Recognit. 2017, 70, 25–43. [Google Scholar] [CrossRef]
- Eminoglu, S.; Isikhan, M.; Bayhan, N.; Gulden, M.A.; Incedere, O.S.; Soyer, S.T.; Kocak, S.; Yalcin, C.; Ustundag, M.C.B.; Turan, O.; et al. A 1280 × 1024-15 µm CTIA ROIC for SWIR FPAs. In Infrared Technology and Applications XLI; Andresen, B.F., Fulop, G.F., Hanson, C.M., Norton, P.R., Eds.; SPIE: Bellingham, WA, USA; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9451, pp. 218–230. [Google Scholar] [CrossRef]
- Murari, K.; Etienne-Cummings, R.; Thakor, N.V.; Cauwenberghs, G. A CMOS In-Pixel CTIA High-Sensitivity Fluorescence Imager. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 449–458. [Google Scholar] [CrossRef]
- Berkovich, A.; Castro, A.; Islam, M.; Choa, F.; Barrows, G.; Abshire, P. Dark current reduction by an adaptive CTIA photocircuit for room temperature SWIR sensing. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Zhai, Y.; Ding, R. Design of a ROIC with high dynamic range for LWIR FPAs. In Infrared, Millimeter-Wave, and Terahertz Technologies III; Zhang, C., Zhang, X.C., Tani, M., Eds.; SPIE: Bellingham, WA, USA; International Society for Optics and Photonics: Bellingham, WA, USA, 2011; Volume 9275, pp. 160–167. [Google Scholar] [CrossRef]
- Borniol, E.D.; Guellec, F.; Castelein, P.; Rouvié, A.; Robo, J.A.; Reverchon, J.L. High-performance 640 x 512 pixel hybrid InGaAs image sensor for night vision. In Infrared Technology and Applications XXXVIII; Andresen, B.F., Fulop, G.F., Norton, P.R., Eds.; SPIE: Bellingham, WA, USA; International Society for Optics and Photonics: Bellingham, WA, USA, 2011; Volume 8353, pp. 88–95. [Google Scholar] [CrossRef]
- Blerkom, D.A.V. Analysis and simulation of CTIA-based pixel reset noise. In Infrared Technology and Applications XXXVII; Andresen, B.F., Fulop, G.F., Norton, P.R., Eds.; SPIE: Bellingham, WA, USA; International Society for Optics and Photonics: Bellingham, WA, USA, 2011; Volume 8012, pp. 159–168. [Google Scholar] [CrossRef]
- Soto, J.E.; Valenzuela, W.E.; Diaz, S.; Saavedra, A.; Figueroa, M.; Ghasemi, J.; Zarkesh-Ha, P. An intelligent readout integrated circuit (iROIC) with on-chip local gradient operations. In Proceedings of the 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi, Georgia, 5–8 December 2017; pp. 360–362. [Google Scholar] [CrossRef]
- Meola, C. (Ed.) Infrared Thermography Recent Advances and Future Trends; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012. [Google Scholar] [CrossRef]
- Bench, S.; Miezianko, R. Terravic Research Infrared Database. 2005. Available online: http://vcipl-okstate.org/pbvs/bench/Data/05/download.html (accessed on May 2022).
- Padilla, R.; Netto, S.L.; Da Silva, E.A. A survey on performance metrics for object-detection algorithms. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava, Slovakia, 2–4 June 2020; pp. 237–242. [Google Scholar]
SIS 640 × 480 | FDI 640 × 480 | SIS 320 × 240 | FDI 320 × 240 | |||||
---|---|---|---|---|---|---|---|---|
Used | % | Used | % | Used | % | Used | % | |
LUT | 5930 | 28.5 | 6493 | 31.2 | 3929 | 18.8 | 4051 | 19.4 |
FF | 5021 | 12.0 | 5107 | 12.2 | 3239 | 7.7 | 3270 | 7.8 |
BRAM | 0 | 0 | 75 | 150 | 0 | 0 | 19 | 38 |
Dynamic Power (mW) | Total Dynamic (mW) | Total (mW) | ||||
---|---|---|---|---|---|---|
Dilation | Erosion | Connected Components | Frame Buffer | |||
SIS 320 × 240 (20 MHz) | 2 | 2 | 3 | 0 | 7 | 27 |
SIS 320 × 240 (125 MHz) | 9 | 9 | 20 | 0 | 38 | 58 |
SIS 640 × 480 (20 MHz) | 4 | 3 | 7 | 0 | 14 | 34 |
SIS 640 × 480 (125 MHz) | 12 | 12 | 17 | 0 | 41 | 61 |
FDI 320 × 240 (20 MHz) | 2 | 2 | 3 | 12 | 19 | 39 |
FDI 320 × 240 (104 MHz) | 12 | 14 | 17 | 34 | 77 | 97 |
Dataset | Spectrum | Image Size | Number of Sequences | Total Number of Images |
---|---|---|---|---|
OSU Thermal pedestrian dataset [70] | Thermal IR | 10 | 284 | |
Terravic Motion IR dataset [71] | Thermal IR | 18 | 23,355 |
This Work | [40] | [30] | [56] | [43] | |||
---|---|---|---|---|---|---|---|
Technology (µm) | 0.35 | 0.18 | 0.18 | 0.18 | 0.13 | 0.35 | 0.18 |
Array size (pixels) | |||||||
Pixel pitch (m) | 32 × 32 | 32 × 32 | 31 × 31 | 5.9 × 5.9 | 5 × 5 | 32 × 32 | 32 × 32 |
Fill Factor (%) | 28 | 74 | 19 | 30 | 60 | 34 | 76 |
Power (w) | 8.25 (pixel) | - | 2.18 (array) | 51.1 (array) | 229 (array) | - | - |
Type of integrator | CTIA | CTIA | OTA + 2 CAP | 5T + 1 CAP | 4T | CTIA | CTIA |
Tested spectrum | IR | IR | Visible | Visible | Visible | Visible IR/NIR | Visible IR/NIR |
AP | 0.87–0.92 | - | 0.84 | 0.94 | 0.7–0.87 | - | - |
SIS fps | 3846 | - | 30 | 30 | 15 (207 max) | 556 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela, W.; Saavedra, A.; Zarkesh-Ha, P.; Figueroa, M. Motion-Based Object Location on a Smart Image Sensor Using On-Pixel Memory. Sensors 2022, 22, 6538. https://doi.org/10.3390/s22176538
Valenzuela W, Saavedra A, Zarkesh-Ha P, Figueroa M. Motion-Based Object Location on a Smart Image Sensor Using On-Pixel Memory. Sensors. 2022; 22(17):6538. https://doi.org/10.3390/s22176538
Chicago/Turabian StyleValenzuela, Wladimir, Antonio Saavedra, Payman Zarkesh-Ha, and Miguel Figueroa. 2022. "Motion-Based Object Location on a Smart Image Sensor Using On-Pixel Memory" Sensors 22, no. 17: 6538. https://doi.org/10.3390/s22176538
APA StyleValenzuela, W., Saavedra, A., Zarkesh-Ha, P., & Figueroa, M. (2022). Motion-Based Object Location on a Smart Image Sensor Using On-Pixel Memory. Sensors, 22(17), 6538. https://doi.org/10.3390/s22176538