The Effects of a Visual Stimuli Training Program on Reaction Time, Cognitive Function, and Fitness in Young Soccer Players
Abstract
:1. Introduction
- There is a significant relationship between RT and physical performance, as well as cognitive function, in adolescent soccer players.
- A visual stimuli training program can improve the RT, cognitive function, and physical performance of adolescent soccer players.
2. Materials and Methods
2.1. Study Population
2.2. Study Protocol
2.3. Measurements
2.3.1. Reaction Time Assessment
2.3.2. Physical Fitness Assessment
- (a)
- Manual dynamometry
- (b)
- Hand grip
- (c)
- Sit-and-reach test
- (d)
- Repeated Sprint test
2.4. Cognitive Tests
- (a)
- Figure Drawing Test
- (b)
- The Pen-to-Point Test
2.5. Visual Field
2.6. Visual Stimuli Soccer Training Program
2.7. Statistical Analysis of Data
3. Results
3.1. Correlations
3.2. Regression Analysis
3.2.1. Linear Regression
3.2.2. Multiple Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nascimento, H.; Martinez-Perez, C.; Alvarez-Peregrina, C.; Sánchez-Tena, M.A. Citations Network Analysis of Vision and Sport. Int. J. Environ. Res. Public Health 2020, 17, 7574. [Google Scholar] [CrossRef]
- Abernethy, B. Enhancing sports performance through clinical and experimental optometry. Clin. Exp. Optom. 1986, 69, 189–196. [Google Scholar] [CrossRef]
- Abernethy, B.; Wollstein, J. Improving anticipation in racquet sports. Sports Coach. 1989, 12, 15–18. [Google Scholar]
- Blundell, N.L. The contribution of vision to the learning and performance of sports skills: Part The role of selected visual parameters. Aust. J. Sci. Med. Sport 1985, 17, 3–11. [Google Scholar]
- Spera, R.; Belviso, I.; Sirico, F.; Palermi, S.; Massa, B.; Mazzeo, F.; Montesano, P. Jump and balance test in judo athletes with or without visual impairments. J. Hum. Sport Exerc. 2019, 14, S937–S947. [Google Scholar]
- Manso, J.M.G.; Campos, J.; Lizaur, P.; Pablo, C. El Talento Deportivo, 1st ed.; Gymnos: Madrid, Spain, 2003. [Google Scholar]
- Burris, K.; Vittetoe, K.; Ramger, B.; Suresh, S.; Tokdar, S.T.; Reiter, J.P.; Appelbaum, L.G. Sensorimotor abilities predict on-field performance in professional baseball. Sci. Rep. 2018, 8, 116. [Google Scholar] [CrossRef]
- Ciućmański, B.; Wątroba, J. Training selected visual perception abilities and the efficiency footballers. In Gry Zespołowe W Wychowaniu Fizycznym I Sporcie, 1st ed.; Żak, S.R., Spieszny, M., Klocek, T., Eds.; Studia i Monografie nr 33 AWF: Cracow, Poland, 2005; pp. 298–303. (In Polish) [Google Scholar]
- Planer, P.M. Sports Vision Manual, 1st ed.; International Academy of Sports Vision: Harrisburg, PA, USA, 1994. [Google Scholar]
- Raczek, J. Motor Coordination abilities: Their theoretical and empirical principles, and their meaning in sport. Sport Wyczyn. 1991, 5–6, 8–19. [Google Scholar]
- Espar, X. Balonmano, 1st ed.; Martínez Roca: Barcelona, Spain, 2001. [Google Scholar]
- Quevedo, L.; Solé, J. Visión periférica: Propuesta de entrenamiento. Apunt. Edu. Fís. Deportes 2007, 88, 75–80. [Google Scholar]
- Reigal, E.R.; Barrero, S.; Martin, I.; Morales-Sánchez, V.; Juárez-Ruiz de Mier, R.; Hernández-Mendo, A. Relationships Between Reaction Time, Selective Attention, Physical Activity, and Physical Fitness in Children. Front Psychol. 2019, 10, 2278. [Google Scholar] [CrossRef]
- Metin, B.; Wiersema, R.; Verguts, T.; Gasthuys, R.; Van Der Meere, J.J.; Roeyers, H.; Sonuga-Barke, E. Event rate and reaction time performance in ADHD: Testing predictions from the state regulation deficit hypothesis using an ex-Gaussian model. Child. Neuropsychol. 2016, 22, 99–109. [Google Scholar] [CrossRef]
- Sant’Ana, J.; Franchini, E.; da Silva, V.; Diefenthaeler, F. Effect of fatigue on reaction time, response time, performance time, and kick impact in taekwondo roundhouse kick. Sport Biomech. 2016, 16, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Adleman, N.E.; Chen, G.; Reynolds, R.C.; Frackman, A.; Razdan, V.; Weissman, D.H.; Pine, D.S.; Leibenluft, E. Age-related differences in the neural correlates of trial-to-trial variations of reaction time. Dev. Cogn. Neurosci. 2016, 19, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Greenhouse, I.; King, M.; Noah, S.; Maddock, R.J.; Ivry, R.B. Individual differences in resting corticospinal excitability are correlated with reaction time and GABA content in motor cortex. J. Neurosci. 2017, 37, 2686–2696. [Google Scholar] [CrossRef] [PubMed]
- Jayaswal, A.A. Comparison between auditory and visual simple reaction times and its relationship with gender in 1st year MBBS students of jawaharlal nehru medical college, Bhagalpur, Bihar. Int. J. Med. Res. Rev. 2016, 4, 1228–1232. [Google Scholar] [CrossRef]
- Boisgontier, M.P.; Wittenberg, G.F.; Fujiyama, H.; Levin, O.; Swinnen, S.P. Complexity of central processing in simple and choice multilimb reaction-time tasks. PLoS ONE 2014, 9, e90457. [Google Scholar] [CrossRef]
- Woods, D.L.; Wyma, J.M.; Yund, E.W.; Herron, T.J.; Reed, B. Factors influencing the latency of simple reaction time. Front. Hum. Neurosci. 2015, 9, 131. [Google Scholar] [CrossRef]
- Deary, I.J.; Der, G. Reaction time, age, and cognitive ability: Longitudinal findings from age 16 to 63 years in representative population samples. Aging Neuropsychol. Cogn. 2005, 12, 187–215. [Google Scholar] [CrossRef]
- Leckie, R.L.; Oberlin, L.E.; Voss, M.W.; Prakash, R.S.; Szabo-Reed, A.; Chaddock-Heyman, L.; Phillips, S.M.; Gothe, N.; Mailey, E.; Vieira-Potter, V.; et al. BDNF mediates improvements in executive function following a 1-year exercise intervention. Front. Hum. Neurosci. 2014, 8, 985. [Google Scholar] [CrossRef]
- Prinzmetal, W.; McCool, C.; Park, S. Attention: Reaction time and accuracy reveal different mechanisms. J. Exp. Psychol. Gen. 2005, 134, 73–92. [Google Scholar] [CrossRef]
- Jehu, D.A.; Desponts, A.; Paquet, N.; Lajoie, Y. Prioritizing attention on a reaction time task improves postural control and reaction time. Int. J. Neurosci. 2015, 125, 100–106. [Google Scholar] [CrossRef]
- Chun, M.M.; Golomb, J.D.; Turk-Browne, N.B. A taxonomy of external and internal attention. Annu. Rev. Psychol. 2011, 62, 73–101. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, R.J.; Karns, C.M.; Neville, H.J.; Hillyard, S.A. Early auditory evoked potential is modulated by selective attention and related to individual differences in visual working memory capacity. J. Cogn. Neurosci. 2014, 26, 2682–2690. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Ramirez, M.; Hysaj, K.; Niebur, E. Neural mechanisms of selective attention in the somatosensory system. J. Neurophysiol. 2016, 116, 1218–1231. [Google Scholar] [CrossRef] [PubMed]
- Griswold, D.; Rockwell, K.; Killa, C.; Maurer, M.; Landgraff, N.; Learman, K. Establishing the reliability and concurrent validity of physical performance tests using virtual reality equipment for community-dwelling healthy elders. Disabil. Rehabil. 2014, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Pazzaglia, C.; Imbimbo, I.; Tranchita, E.; Minganti, C.; Ricciardi, D.; Lo Monaco, R.; Parisi, A.; Padua, L. Comparison of virtual reality rehabilitation and conventional rehabilitation in Parkinson’s disease: A randomised controlled trial. Physiotherapy 2020, 106, 36–42. [Google Scholar] [CrossRef]
- Luiz Aramaki, A.; Ferreira Sampaio, R.; Silva Reis, A.C.; Cavalcanti, A.; Caetano Martins Silva, F.; Dutra, E. Virtual reality in the rehabilitation of patients with stroke: An integrative review. Arq. Neuro-Psiquiatr. 2019, 77, 268–278. [Google Scholar]
- Zwierko, T.; Florkiewicz, B.; Slawomir, F.; Kszak-Krzyzanowska, A. The ability to maintain atention during visuomotor task performance in handball players and non athletes. Cent. Eur. J. Sport Sci. Med. 2014, 7, 99–106. [Google Scholar]
- Fischer, M.V.; Stone, J.; Hawkes, T.D.; Eveland, E.; Strang, A.J. Integrative physical and cognitive training development to better meet airmen mission requirements. Procedia Manuf. 2015, 3, 1580–1586. [Google Scholar] [CrossRef]
- Zurek, M.; Cosmi, S.; Cicchela, A.; Roi, G.S. Simple and complex reaction time at visual stimulation, before and after a rehabilitation after knee surgery in football players. In Proceedings of the XXIV International Conference on Sports Rehabilitation and Traumatology, London, UK, 11–12 April 2015. [Google Scholar]
- Abernethy, B.; Wood, J.M. Do generalized visual training programmes for sport really work? An experimental investigation. J. Sports Sci. 2001, 19, 203–222. [Google Scholar] [CrossRef]
- Appelbaum, L.G.; Schroeder, J.E.; Cain, M.S.; Mitroff, S.R. Improved Visual Cognition through Stroboscopic Training. Front. Psychol. 2011, 2, 276. [Google Scholar] [CrossRef]
- Gentier, I.; Augustijn, M.; Deforche, B.; Tanghe, A.; De Bourdeaudhuij, I.; Lenoir, M.; D’Hondt, E. A comparative study of performance in simple and choice reaction time tasks between obese and healthy-weight children. Res. Dev. Disabil. 2013, 34, 2635–2641. [Google Scholar] [CrossRef] [PubMed]
- Syväoja, H.J.; Tammelin, T.H.; Ahonen, T.; Kankaanpää, A.; Kantomaa, M.T. The associations of objectively measured physical activity and sedentary time with cognitive functions in school-aged children. PLoS ONE 2014, 9, e103559. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Pontifex, M.B.; Raine, L.B.; Castelli, D.M.; Hall, E.E.; Kramer, A.F. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 2009, 159, 1044–1054. [Google Scholar] [CrossRef]
- Kao, S.C.; Westfall, D.R.; Soneson, J.; Gurd, B.; Hillman, C.H. Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology 2017, 54, 1335–1345. [Google Scholar] [CrossRef] [PubMed]
- Reloba-Martínez, S.; Reigal, R.E.; Hernández-Mendo, A.; Martínez-López, E.J.; Martín-Tamayo, I.; Chirosa-Ríos, L.J. Effects of vigorous extracurricular physical exercise on the attention of schoolchildren. Rev. Psicol. Deporte. 2017, 26, 29–36. [Google Scholar]
- Luque-Casado, A.; Perakakis, P.; Hillman, C.H.; Kao, S.-C.; Llorens, F.; Guerra, P.; Sanabria, D. Differences in sustained attention capacity as a function of aerobic fitness. Med. Sci. Sports Exerc. 2016, 48, 887–895. [Google Scholar] [CrossRef]
- Westfall, D.R.; Gejl, A.K.; Tarp, J.; Wedderkopp, N.; Kramer, A.; Hillman, C.; Bugge, A. Associations between aerobic fitness and cognitive control in adolescents. Front Psychol. 2018, 9, 1298. [Google Scholar] [CrossRef]
- Council of Europe, Committee for Development of Sport. Eurofit: European Tests of Physical Fitness; Edigraf Editoriale Grafica: Rome, Italy, 1988. [Google Scholar]
- Ruiz, J.R.; Castro-Piñero, J.; España-Romero, V.; Artero, E.G.; Ortega, F.B.; Cuenca, M.M.; Jimenez-Pavón, D.; Chillón, P.; Girela-Rejón, M.J.; Mora, J.; et al. Field-based fitness assessment in young people: The ALPHA health-related fitness test battery for children and adolescents. Br. J. Sports Med. 2011, 45, 518–524. [Google Scholar] [CrossRef]
- Lynall, R.C.; Blackburn, J.T.; Guskiewicz, K.M.; Marshall, S.W.; Plummer, P.; Mihalik, J.P. Reaction time and joint kinematics during functional movement in recently concussed individuals. Arch. Phys. Med. Rehabil. 2018, 99, 880–886. [Google Scholar] [CrossRef]
- Walton, C.C.; Keegan, R.J.; Martin, M.; Hallock, H. The potential role for cognitive training in sport: More research needed. Front. Psychol. 2018, 9, 1121. [Google Scholar] [CrossRef]
- Nuri, L.; Shadmehr, A.; Ghotbi, N.; Attarbashi Moghadam, B. Reaction time and anticipatory skill of athletes in open and closed skill-dominated sport. Eur. J. Sport Sci. 2013, 13, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Tønnessen, E.; Haugen, T.; Shalfawi, S.A. Reaction time aspects of elite sprinters in athletic world championships. J. Strength Cond. Res. 2013, 27, 885–892. [Google Scholar] [CrossRef] [PubMed]
- van de Water, T.; Huijgen, B.; Faber, I.; Elferink-Gemser, M. Assessing cognitive performance in badminton players: A reproducibility and validity study. J. Hum. Kinet. 2017, 55, 149–159. [Google Scholar] [CrossRef]
- Ruschel, C.; Haupenthal, A.; Hubert, M.; Fontana, H.B.; Pereira, S.M.; Roesler, H. Simple reaction time in soccer players from differing categories and field positions. Motricidad 2011, 7, 73–82. [Google Scholar]
- Mudric, M.; Cuk, I.; Nedeljkovic, A.; Jovanovic, S.; Jaric, S. Evaluation of Video-based method for the measurement of reaction time in specific sport situation. Int. J. Perf. Anal. Sports 2015, 15, 1077–1089. [Google Scholar] [CrossRef]
- Stiles, J. Neural plasticity and cognitive development. Dev. Neuropsychol. 2000, 18, 237–272. [Google Scholar] [CrossRef] [PubMed]
- Hötting, K.; Röder, B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 2013, 37, 2243–2257. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef] [Green Version]
Clinical Characteristics | Mean Value ± SD | Range (Minimum—Maximum Value) | Independent t-Test Report | ||
---|---|---|---|---|---|
Group A | Group B | Group A | Group B | ||
Age (years) | 1.81 | 1.64 | 10–15 | 10–15 | t = −1.648, p = 0.108 |
Height (m) | 0.112 | 0.136 | 1.41–1.79 | 1.3–1.8 | t = −2.065, p = 0.066 |
Weight (kg) | 16.24 | 14.31 | 31–90 | 24–72 | t = −0.864, p = 0.393 |
BMI | 4.34 | 4.12 | 15.5–33.5 | 13.36–28.4 | t = −0.354, p = 0.726 |
Soccer Experience (years) | 1.74 | 0.71 | 3–8 | 1–3 | t = −7.735, p < 0.001 |
Reaction Time (s)—Fitlight Trainer | Mean Value ± SD | Statistical Tests Report | Independent t-Test Report | ||||
---|---|---|---|---|---|---|---|
Group A | Group B | Group A | Group B | A vs. B | |||
Pre | Post | Pre | Post | Wilcoxon Ranks | Wilcoxon Ranks | ||
SRT | 0.85 ± 0.15 | 0.75 ± 0.18 | 0.84 ± 0.2 | 0.82 ± 0.14 | Z = −3.049, p = 0.002 | Z = −0.187 p = 0.852 | t = 1.675 p = 0.103 |
CRT | 0.97 ± 0.13 | 0.92 ± 0.17 | 1.08 ± 0.19 | 1.02 ± 0.13 | Z = −2.330, p = 0.020 | Z = −1.288 p = 0.198 | t = −0.065 p = 0.949 |
Physical Fitness Measures | Mean Value ± SD | Statistical Tests Report (Paired t-Test/Wilcoxon Ranks) | Mann–Whitney/ Independen t-Test Report | ||||
---|---|---|---|---|---|---|---|
Group A | Group B | Group A | Group B | A vs. B | |||
Pre | Post | Pre | Post | ||||
RFD (Kg/s) | 10.37± 6.03 | 20.29 ± 13.86 | 14.57 ± 8.79 | 19.72 ± 17.23 | Z = −3.114 p = 0.002 | Z = −0.952 p = 0.341 | U = 115.5 p = 0.059 |
(R) Hand grip (Kg) | 16.02 ± 8.62 | 27.69 ± 11.71 | 12.33 ± 6.11 | 23.30 ± 9.41 | Z = −4.107 p < 0.001 | Z= −3.920 p < 0.001 | t = −0.536 p = 0.595 |
(L) Hand grip (Kg) | 14.63 ± 8.94 | 26.00 ± 10.67 | 12.56 ± 6.41 | 24.16 ± 10.01 | Z = −4.107 p < 0.001 | t = −12.521 p < 0.001 | t = 0.194 p = 0.847 |
Sit-and-reach flexibility (cm) | 4.06 ± 5.79 | −3.72 ± 5.63 | 0.47 ± 5.87 | −2.00 ± 6.63 | Z = −3.725 p < 0.001 | Z = −2.279 p = 0.023 | t = 3.978 p < 0.001 |
Repeated sprint (s) | 21.19 ± 1.17 | 24.02 ± 2.64 | 22.78 ± 1.51 | 22.63 ± 1.44 | Z = −3.409 p < 0.001 | Z = −3.923 p < 0.001 | U = 36 p < 0.001 |
Cognitive Test—Figure Drawing | Mean Value ± SD | Statistical tests Report (Paired t-Test/Wilcoxon Ranks) | Mann–Whitney/ Independent t-Test Report | ||||
---|---|---|---|---|---|---|---|
Group A | Group B | Group A | Group B | A vs. B | |||
Pre | Post | Pre | Post | ||||
Performance (s)—Dominant Hand | 30.86 ± 11.46 | 38.92 ± 9.83 | 32.58 ± 15.83 | 44.68 ± 19.32 | Z = −2.638 p = 0.008 | Z = −2.438 p = 0.015 | t = 0.993 p = 0.328 |
Pen Lifts—Dominant Hand | 0.75 ± 1.07 | 0.56 ± 0.71 | 1.30 ± 1.86 | 0.79 ± 0.28 | t = 0.382 p = 0.708 | t = 0.362 p = 0.722 | U = −175 p = 0.880 |
Performance (s)—Non-Dominant Hand | 25.17 ± 9.09 | 32.37 ± 9.97 | 27.68 ± 13.06 | 33.86 ± 14.71 | t = −3.106 p = 0.007 | Z = −1.539 p = 0.124 | t = 0.062 p = 0.951 |
Pen Lifts—Non-Dominant Hand | 0.63 ± 0.96 | 0.72 ± 0.90 | 0.60 ± 1.46 | 0.40 ± 0.75 | t = −0.382 p = 0.708 | t = 0.308, p = 0.762 | U = 163 p = 0.578 |
Cognitive Test—Pen to Point (s) | Mean Value ± SD | Statistical Tests Report | ANCOVA Analysis Report | ||||
---|---|---|---|---|---|---|---|
Group A | Group B | Group A | Group B | A vs. B | |||
Pre | Post | Pre | Post | Wilcoxon Ranks | Wilcoxon Ranks | ||
Dominant Hand | 89.47± 26.69 | 25.39 ± 6.80 | 65.89± 27.94 | 23.67 ± 7.09 | Z = −3.351 p < 0.001 | Z = −3.527 p < 0.001 | F = 0.542 p = 0.467 |
Non-Dominant Hand | 98.50 ± 5.60 | 27.08 ± 7.56 | 61.58± 30.73 | 25.69 ± 9.00 | Z = −3.516 p < 0.001 | Z = −3.101 p = 0.002 | F = 0.196 p = 0.661 |
Visual Field—Reaction Time (s) | Mean Value ± SD | Statistical Tests Report | ANCOVA Analysis Report | ||||
---|---|---|---|---|---|---|---|
Group A | Group B | Group A | Group B | A vs. B | |||
Pre | Post | Pre | Post | Paired t-Test | Wilcoxon Ranks | ||
VF | 0.67 ± 0.32 | 0.61 ± 0.31 | 1.06 ± 0.39 | 0.88 ± 0.32 | t = 0.893 p = 0.384 | Z = 1.717 p = 0.086 | F = 4.124, p = 0.05 |
Correlations | Pearson/Spearman Coefficient and p-Value | |
---|---|---|
Pre | Post | |
Age—SRT | rho = −0.489, p = 0.002 | rho = −0.579, p < 0.001 |
Age—CRT | r = −0.360, p = 0.026 | r = −0.558, p < 0.001 |
Age—RFD | rho = 0.489, p = 0.002 | rho = 0.571, p < 0.001 |
Age—VF | Not statistically significant | rho = −0.406, p = 0.011 |
Soccer Experience—VF | rho = −0.416, p = 0.020 | rho = −0.456, p = 0.010 |
Soccer Experience—CRT | r = −0.425, p = 0.017 | r = −0.469, p = 0.008 |
Age—Soccer Experience | r = 0.445, p = 0.012 |
Variables | Group A |
---|---|
VR-RT | F(1, 16) = 25.070, p < 0.001, R2 = 0.610 |
CRT (FITLIGHT) | F(1, 16) = 79.789, p < 0.001, R2 = 0.833 |
DomFigure | F(1,16) = 0.256, p = 0.620, R2 = 0.016 |
NonDomFig | F(1,16) = 1.195, p = 0.291, R2 = 0.069 |
DomPen | F(1,16) = 0.028, p = 0.869, R2 = 0.002 |
NonDomPen | F(1,16) = 0.131, p = 0.722, R2 = 0.008 |
RFD | F(1,16) = 9.808, p = 0.006, R2 = 0.380 |
Repeated Sprint | F(1,16) = 7.693, p = 0.014, R2 = 0.325 |
HandGripL | F(1,16) = 4.659, p = 0.046, R2 = 0.226 |
HandGripR | F(1,16) = 5.516, p = 0.032, R2 = 0.256 |
SRT | F(1,16) = 8.096, p = 0.012, R2 = 0.336 |
Variables | Group A |
---|---|
VR-RT | t = 3.393, p = 0.019 |
CRT (Fitlight) | t = 1.776, p = 0.136 |
DomFigure | t = 0.473, p = 0.656 |
NonDomFig | t = −0.768, p = 0.477 |
DomPen | t = 0.796, p = 0.462 |
NonDomPen | t = −0.125, p = 0.905 |
RFD | t = −0.018, p = 0.987 |
Repeated Sprint | t = 1.088, p = 0.326 |
HandGripL | t = 1.784, p = 0.134 |
HandGripR | t = −1.017, p = 0.356 |
SRT | t = −0.913, p = 0.403 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theofilou, G.; Ladakis, I.; Mavroidi, C.; Kilintzis, V.; Mirachtsis, T.; Chouvarda, I.; Kouidi, E. The Effects of a Visual Stimuli Training Program on Reaction Time, Cognitive Function, and Fitness in Young Soccer Players. Sensors 2022, 22, 6680. https://doi.org/10.3390/s22176680
Theofilou G, Ladakis I, Mavroidi C, Kilintzis V, Mirachtsis T, Chouvarda I, Kouidi E. The Effects of a Visual Stimuli Training Program on Reaction Time, Cognitive Function, and Fitness in Young Soccer Players. Sensors. 2022; 22(17):6680. https://doi.org/10.3390/s22176680
Chicago/Turabian StyleTheofilou, Georgia, Ioannis Ladakis, Charikleia Mavroidi, Vasileios Kilintzis, Theodoros Mirachtsis, Ioanna Chouvarda, and Evangelia Kouidi. 2022. "The Effects of a Visual Stimuli Training Program on Reaction Time, Cognitive Function, and Fitness in Young Soccer Players" Sensors 22, no. 17: 6680. https://doi.org/10.3390/s22176680