Rayleigh-Based Distributed Optical Fiber Sensing
Abstract
:1. Introduction
2. Phenomenological Model of Distributed Measurements in Optical Fibers
2.1. Propagation along the Fiber
2.2. Coupled-Mode Representation
2.3. The Role of External Perturbations
2.4. Invariance of the Round Trip Response with Respect to a Local Rotation of the Reference Frame
3. Distributed Sensing in Single-Mode Fibers
3.1. Phase-Based Distributed Sensing
Strategies for Measuring Perturbations
3.2. Polarization-Based Distributed Sensing
4. Examples of Applications
4.1. Distributed Strain Sensing
4.2. Distributed Pressure Sensing
4.3. Distributed Acoustic Sensing
4.4. Temperature Sensing
4.5. Shape and Twist Sensing
4.6. Distributed Sensing of Magnetic Field and Electric Current
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
DOAJ | Directory of open access journals |
SNR | Signal-to-Noise-Ratio |
OFS | Optical Fiber Sensor |
DOFS | Distributed Optical Fiber Sensor |
OTDR | Optical Time Domain Reflectometry |
OFDR | Optical Frequency Domain Reflectometry |
CW | Continuous Wave |
CMT | Coupled-mode Theory |
PDL | Polarization Dependent Loss |
PMD | Polarization Mode Dispersion |
DAS | Distributed Acoustic Sensing |
DVS | Distributed Vibration Sensing |
FBG | Fiber Bragg Grating |
Appendix A. Modelling of Optical Fibers by Coupled-Mode Theory
Appendix A.1. Fiber Twist
Appendix A.2. Faraday Rotation
Appendix A.3. Rayleigh Scattering
Appendix A.4. About the Interpretation of the Scattering Matrices
Appendix B. Numerical Solution of the Propagation Equations
Appendix C. Mathematical Proofs
Appendix C.1. Proof of Equation (6) of the Main Article
Appendix C.2. Proof of Equation (13) of the Main Article
Appendix C.3. Proof of Equation (14) of the Main Article
Appendix C.4. Proof of the Invariance with Respect to Rotation of the Reference Frame
Appendix C.5. Proof of the Master Equations for Distributed Polarization Sensing
References
- Culshaw, B.; Kersey, A. Fiber-Optic Sensing: A Historical Perspective. J. Light. Technol. 2008, 26, 1064–1078. [Google Scholar] [CrossRef]
- Hartog, A. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Tyler, S.W.; Selker, J.S.; Hausner, M.B.; Hatch, C.E.; Torgersen, T.; Thodal, C.E.; Schladow, S.G. Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Ukil, A.; Braendle, H.; Krippner, P. Distributed Temperature Sensing: Review of Technology and Applications. IEEE Sens. J. 2012, 12, 885–892. [Google Scholar] [CrossRef]
- Amira, Z.; Bouyahi, M.; Ezzedine, T. Measurement of Temperature through Raman Scattering. Procedia Comput. Sci. 2015, 73, 350–357. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M. Physics and applications of Raman distributed optical fiber sensing. Light Sci. Appl. 2022, 11, 128. [Google Scholar] [CrossRef]
- Galindez-Jamioy, C.A.; López-Higuera, J.M. Brillouin Distributed Fiber Sensors: An Overview and Applications. J. Sens. 2012, 2012, 204121. [Google Scholar] [CrossRef]
- Hu, D.J.J.; Humbert, G.; Dong, H.; Zhang, H.; Hao, J.; Sun, Q. Review of Specialty Fiber Based Brillouin Optical Time Domain Analysis Technology. Photonics 2021, 8, 421. [Google Scholar] [CrossRef]
- Bao, X.; Zhou, Z.; Wang, Y. Review: Distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection. PhotoniX 2021, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, Q. Optical Fiber Distributed Acoustic Sensors: A Review. J. Light. Technol. 2021, 39, 3671–3686. [Google Scholar] [CrossRef]
- Gorshkov, B.G.; Yüksel, K.; Fotiadi, A.A.; Wuilpart, M.; Korobko, D.A.; Zhirnov, A.A.; Stepanov, K.V.; Turov, A.T.; Konstantinov, Y.A.; Lobach, I.A. Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective. Sensors 2022, 22, 1033. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Fabelinskii, I. Molecular Scattering of Light; Plenum Press: New York, NY, USA, 1968. [Google Scholar]
- Froggatt, M.; Moore, J. High-Spatial-Resolution Distributed Strain Measurement in Optical Fiber with Rayleigh Scatter. Appl. Opt. 1998, 37, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Galtarossa, A.; Palmieri, L. Distributed Polarization Sensing. In Proceedings of the 25th International Conference on Optical Fiber Sensors, Jeju, Korea, 24–28 April 2017; Volume 10323, p. 1032318. [Google Scholar] [CrossRef]
- Martins, H.F.; Martin-Lopez, S.; Corredera, P.; Salgado, P.; Frazão, O.; González-Herráez, M. Modulation Instability-Induced Fading in Phase-Sensitive Optical Time-Domain Reflectometry. Opt. Lett. 2013, 38, 872–874. [Google Scholar] [CrossRef] [PubMed]
- Eickhoff, W.; Ulrich, R. Optical frequency domain reflectometry in single-mode fiber. Appl. Phys. Lett. 1981, 39, 693–695. [Google Scholar] [CrossRef]
- Fan, X.; Koshikiya, Y.; Ito, F. Centimeter-Level Spatial Resolution over 40 Km Realized by Bandwidth-Division Phase-Noise-Compensated OFDR. Opt. Express 2011, 19, 19122–19128. [Google Scholar] [CrossRef]
- Wang, B.; Fan, X.; Wang, S.; Du, J.; He, Z. Millimeter-resolution long-range OFDR using ultra-linearly 100 GHz-swept optical source realized by injection-locking technique and cascaded FWM process. Opt. Express 2017, 25, 3514–3524. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, L.; Xie, W.; Cheng, R.; Liu, Z.; Wei, W.; Dong, Y. Ultra-long range optical frequency domain reflectometry using a coherence-enhanced highly linear frequency-swept fiber laser source. Opt. Express 2019, 27, 19359–19368. [Google Scholar] [CrossRef]
- Li, A.; Wang, Y.; Hu, Q.; Shieh, W. Few-Mode Fiber Based Optical Sensors. Opt. Express 2015, 23, 1139–1150. [Google Scholar] [CrossRef]
- Westbrook, P.S.; Kremp, T.; Feder, K.S.; Ko, W.; Monberg, E.M.; Wu, H.; Simoff, D.A.; Taunay, T.F.; Ortiz, R.M. Continuous Multicore Optical Fiber Grating Arrays for Distributed Sensing Applications. J. Light. Technol. 2017, 35, 1248–1252. [Google Scholar] [CrossRef]
- Coscetta, A.; Catalano, E.; Cerri, E.; Oliveira, R.; Bilro, L.; Zeni, L.; Cennamo, N.; Minardo, A. Distributed Static and Dynamic Strain Measurements in Polymer Optical Fibers by Rayleigh Scattering. Sensors 2021, 21, 5049. [Google Scholar] [CrossRef]
- Westbrook, P.S.; Feder, K.S.; Kremp, T.; Monberg, E.M.; Wu, H.; Zhu, B.; Huang, L.; Simoff, D.A.; Shenk, S.; Handerek, V.A.; et al. Enhanced Optical Fiber for Distributed Acoustic Sensing beyond the Limits of Rayleigh Backscattering. iScience 2020, 23, 101137. [Google Scholar] [CrossRef] [PubMed]
- Collin, R.E. Foundations for Microwave Engineering; McGraw-Hill: Singapore, 1992. [Google Scholar]
- Jones, R.C. A New Calculus for the Treatment of Optical Systems. Part I. J. Opt. Soc. Am. 1941, 31, 488–493. [Google Scholar] [CrossRef]
- Jones, R.C. A New Calculus for the Treatment of Optical Systems. Part VI. J. Opt. Soc. Am. 1947, 37, 110–112. [Google Scholar] [CrossRef]
- Marcuse, D. Coupled-Mode Theory for Anisotropic Optical Waveguides. Bell Syst. Technol. J. 1975, 54, 985–995. [Google Scholar] [CrossRef]
- Guerra, G.; Abokhamis Mousavi, S.M.; Taranta, A.; Numkam-fokoua, E.; Santagiustina, M.; Galtarossa, A.; Poletti, F.; Palmieri, L. Unified Coupled-Mode Theory for Geometric and Material Perturbations in Optical Waveguides. J. Light. Technol. 2022, 40, 4714–4727. [Google Scholar] [CrossRef]
- Levin, J. On the matrix Riccati equation. Proc. Am. Math. Soc. 1959, 10, 519–524. [Google Scholar] [CrossRef]
- Ulrich, R.; Simon, A. Polarization Optics of Twisted Single-Mode Fibers. Appl. Opt. 1979, 18, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Rashleigh, S. Origins and Control of Polarization Effects in Single-Mode Fibers. J. Light. Technol. 1983, 1, 312–331. [Google Scholar] [CrossRef]
- Palmieri, L. Coupling Mechanism in Multimode Fibers. In Proceedings of the Photonics West OPTO, Online, 6–12 March 2021; SPIE: San Francisco, CA, USA, 2014; Volume 9009, pp. 90090G–90090G-9. [Google Scholar] [CrossRef]
- Palmieri, L.; Galtarossa, A. Coupling Effects Among Degenerate Modes in Multimode Optical Fibers. IEEE Photonics J. 2014, 6, 1–8. [Google Scholar] [CrossRef]
- Galtarossa, A.; Grosso, D.; Palmieri, L.; Schenato, L. Reflectometric Measurement of Birefringence Rotation in Single-Mode Optical Fibers. Opt. Lett. 2008, 33, 2284–2286. [Google Scholar] [CrossRef]
- Palmieri, L.; Galtarossa, A. Distributed Polarization-Sensitive Reflectometry in Nonreciprocal Single-Mode Optical Fibers. J. Light. Technol. 2011, 29, 3178–3184. [Google Scholar] [CrossRef]
- Nakazawa, M. Rayleigh Backscattering Theory for Single-Mode Optical Fibers. J. Opt. Soc. Am. 1983, 73, 1175–1180. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, H.; Hu, X.; Zhao, N.; Mo, Q.; Li, G. Rayleigh Scattering in Few-Mode Optical Fibers. Sci. Rep. 2016, 6, 35844. [Google Scholar] [CrossRef] [PubMed]
- Galtarossa, A.; Palmieri, L. Theoretical Analysis of Reflectometric Measurements in Optical Fiber Links Affected by Polarization-Dependent Loss. J. Light. Technol. 2003, 21, 1233–1241. [Google Scholar] [CrossRef]
- Aulakh, N.S.; Chhabra, J.K.; Kamar, A.; Aggarwal, A.K. Development of a Fiber Optic based System to Monitor Landslide Activity. IETE Tech. Rev. 2004, 21, 75–81. [Google Scholar] [CrossRef]
- Higuchi, K.; Fujisawa, K.; Asai, K.; Pasuto, A.; Marcato, G. Development of landslide displacement detection sensor using optical fiber in the OTDR method. In Proceedings of the 44th Colloquium of Japan Landslide Society, Sasebo, Japan, 26–31 August 2005; pp. 315–318. [Google Scholar]
- Nye, J.F. Physical Properties of Crystals; Oxford Clarendon Press: Oxford, UK, 1992. [Google Scholar]
- Gifford, D.; Soller, B.; Wolfe, M.; Froggatt, M. Distributed fiber-optic temperature sensing using Rayleigh backscatter. In Proceedings of the 2005 31st European Conference on Optical Communication, ECOC 2005, Glasgow, Scotland, 25–29 September 2005; Volume 3, pp. 511–512. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.R.; Pastor-Graells, J.; Martins, H.F.; Garcia-Ruiz, A.; Martin-Lopez, S.; Gonzalez-Herraez, M. Laser Phase-Noise Cancellation in Chirped-Pulse Distributed Acoustic Sensors. J. Light. Technol. 2018, 36, 979–985. [Google Scholar] [CrossRef]
- Gilbert, S.L.; Swann, W.C.; Wang, C.M. Hydrogen Cyanide H13C14N Absorption Reference for 1530 nm to 1560 nm Wavelength Calibration SRM 2519. Nist Spec. Publ. 1998, 260, 137. [Google Scholar]
- Grigor’ev, V.; Kravtsov, V.; Mityurev, A.; Moroz, E.; Pogonyshev, A.; Savkin, K. Methods for Calibrating High-Resolution Optical Reflectometers Operating in the Frequency Domain. Meas. Tech. 2018, 61, 903–907. [Google Scholar] [CrossRef]
- Ding, Z.; Yang, D.; Du, Y.; Liu, K.; Zhou, Y.; Zhang, R.; Xu, Z.; Jiang, J.; Liu, T. Distributed Strain and Temperature Discrimination Using Two Types of Fiber in OFDR. IEEE Photonics J. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Gorshkov, B.G.; Taranov, M.A. Simultaneous optical fibre strain and temperature measurements in a hybrid distributed sensor based on Rayleigh and Raman scattering. Quantum Electron. 2018, 48, 184. [Google Scholar] [CrossRef]
- Chen, M.; Masoudi, A.; Brambilla, G. Performance Analysis of Distributed Optical Fiber Acoustic Sensors Based on φ-OTDR. Opt. Express 2019, 27, 9684–9695. [Google Scholar] [CrossRef]
- Henault, J.; Salin, J.; Moreau, G.; Quiertant, M.; Taillade, F.; Benzarti, K.; Delepine-Lesoille, S. Analysis of the strain transfer mechanism between a truly distributed optical fiber sensor and the surrounding medium. In Concrete Repair, Rehabilitation and Retrofitting III; CRC Press: London, UK, 2012; pp. 733–739. [Google Scholar]
- Boiron, H.; Pillon, J.; Peter, E.; Robin, T.; Villedieu, T.; Morana, A.; Girard, S.; Boukenter, A.; Marin, E.; Lefèvre, H. Optical fiber strain and temperature coefficients determination based on Rayleigh-OFDR. In Proceedings of the Optical Fiber Sensors, Washington, DC, USA, 8–12 June 2020; pp. T3–T42. [Google Scholar]
- Pastor-Graells, J.; Martins, H.F.; Garcia-Ruiz, A.; Martin-Lopez, S.; Gonzalez-Herraez, M. Single-Shot Distributed Temperature and Strain Tracking Using Direct Detection Phase-Sensitive OTDR with Chirped Pulses. Opt. Express 2016, 24, 13121–13133. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fan, X.; Liu, Q.; He, Z. Distributed Fiber-Optic Vibration Sensing Based on Phase Extraction from Time-Gated Digital OFDR. Opt. Express 2015, 23, 33301–33309. [Google Scholar] [CrossRef] [PubMed]
- Marcon, L.; Soto, M.A.; Soriano-Amat, M.; Costa, L.; Fernandez-Ruiz, M.R.; Martins, H.F.; Palmieri, L.; Gonzalez-Herraez, M. High-Resolution Chirped-Pulse φ-OTDR by Means of Sub-Bands Processing. J. Light. Technol. 2020, 38, 4142–4149. [Google Scholar] [CrossRef]
- Rogers, A. Polarisation optical time domain reflectometry. Electron. Lett. 1980, 16, 489–490. [Google Scholar] [CrossRef]
- Rogers, A.J. Polarization-Optical Time Domain Reflectometry: A Technique for the Measurement of Field Distributions. Appl. Opt. 1981, 20, 1060–1074. [Google Scholar] [CrossRef]
- Palmieri, L. Distributed Polarimetric Measurements for Optical Fiber Sensing. Opt. Fiber Technol. 2013, 19, 720–728. [Google Scholar] [CrossRef]
- Aiello, A.; Puentes, G.; Voigt, D.; Woerdman, J.P. Maximum-Likelihood Estimation of Mueller Matrices. Opt. Lett. 2006, 31, 817–819. [Google Scholar] [CrossRef] [PubMed]
- Galtarossa, A.; Grosso, D.; Palmieri, L. Accurate Characterization of Twist-Induced Optical Activity in Single-Mode Fibers by Means of Polarization-Sensitive Reflectometry. IEEE Photon. Technol. Lett. 2009, 21, 1713–1715. [Google Scholar] [CrossRef]
- Floris, I.; Adam, J.M.; Calderón, P.A.; Sales, S. Fiber Optic Shape Sensors: A comprehensive review. Opt. Lasers Eng. 2021, 139, 106508. [Google Scholar] [CrossRef]
- Schenato, L. A review of distributed fibre optic sensors for geo-hydrological applications. Appl. Sci. 2017, 7, 896. [Google Scholar] [CrossRef]
- Schenato, L.; Palmieri, L.; Camporese, M.; Bersan, S.; Cola, S.; Pasuto, A.; Galtarossa, A.; Salandin, P.; Simonini, P. Distributed optical fibre sensing for early detection of shallow landslides triggering. Sci. Rep. 2017, 7, 14686. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, V.; Longoni, L.; Ferrario, M.; Brunero, M.; Arosio, D.; Papini, M. Applicability of an interferometric optical fibre sensor for shallow landslide monitoring–Experimental tests. Eng. Geol. 2021, 288, 106128. [Google Scholar] [CrossRef]
- Ansari, F.; Libo, Y. Mechanics of bond and interface shear transfer in optical fiber sensors. J. Eng. Mech. 1998, 124, 385–394. [Google Scholar] [CrossRef]
- Falcetelli, F.; Rossi, L.; Di Sante, R.; Bolognini, G. Strain transfer in surface-bonded optical fiber sensors. Sensors 2020, 20, 3100. [Google Scholar] [CrossRef] [PubMed]
- Chapeleau, X.; Bassil, A. A general solution to determine strain profile in the core of distributed fiber optic sensors under any arbitrary strain fields. Sensors 2021, 21, 5423. [Google Scholar] [CrossRef]
- Tan, X.; Bao, Y.; Zhang, Q.; Nassif, H.; Chen, G. Strain transfer effect in distributed fiber optic sensors under an arbitrary field. Autom. Constr. 2021, 124, 103597. [Google Scholar] [CrossRef]
- Liu, S.P.; Gu, K.; Zhang, C.C.; Shi, B. Experimental research on strain transfer behavior of fiber-optic cable embedded in soil using distributed strain sensing. Int. J. Geomech. 2021, 21, 04021190. [Google Scholar] [CrossRef]
- Bassil, A.; Chapeleau, X.; Leduc, D.; Abraham, O. Concrete crack monitoring using a novel strain transfer model for distributed fiber optics sensors. Sensors 2020, 20, 2220. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Tang, F.; Li, H.N.; Ansari, F. Characterization of OFDR distributed optical fiber for crack monitoring considering fiber-coating interfacial slip. Struct. Health Monit. 2022. [Google Scholar] [CrossRef]
- Mao, J.; Xu, F.; Gao, Q.; Liu, S.; Jin, W.; Xu, Y. A monitoring method based on FBG for concrete corrosion cracking. Sensors 2016, 16, 1093. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Hao, J.; Sai, Y.; Liu, X. Crack width estimate in reinforced concrete with FBG sensor: Experimental and numerical analysis. Optoelectron. Lett. 2022, 18, 43–47. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiong, Z. Crack detection of reinforced concrete structures based on BOFDA and FBG sensors. Shock Vib. 2018, 2018, 6563537. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, B.; Takahashi, T.; Harada, T. Performance of a BOTDR optical fibre sensing technique for crack detection in concrete structures. Struct. Infrastruct. Eng. 2008, 4, 311–323. [Google Scholar] [CrossRef]
- Meng, D.; Ansari, F. Interference and differentiation of the neighboring surface microcracks in distributed sensing with PPP-BOTDA. Appl. Opt. 2016, 55, 9782–9790. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Tang, F.; Chen, Y.; Meng, W.; Huang, Y.; Chen, G. Concrete pavement monitoring with PPP-BOTDA distributed strain and crack sensors. Smart Struct. Syst 2016, 18, 405–423. [Google Scholar] [CrossRef]
- Villalba, S.; Casas, J.R. Application of optical fiber distributed sensing to health monitoring of concrete structures. Mech. Syst. Signal Process. 2013, 39, 441–451. [Google Scholar] [CrossRef]
- Rodríguez, G.; Casas, J.R.; Villaba, S. Cracking assessment in concrete structures by distributed optical fiber. Smart Mater. Struct. 2015, 24, 035005. [Google Scholar] [CrossRef]
- Rodriguez, G.; Casas, J.R.; Villalba, S. Shear crack width assessment in concrete structures by 2D distributed optical fiber. Eng. Struct. 2019, 195, 508–523. [Google Scholar] [CrossRef]
- Chen, R.; Zaghloul, M.A.; Yan, A.; Li, S.; Lu, G.; Ames, B.C.; Zolfaghari, N.; Bunger, A.P.; Li, M.J.; Chen, K.P. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes. Opt. Express 2016, 24, 3894–3902. [Google Scholar] [CrossRef]
- Sieńko, R.; Zych, M.; Bednarski, Ł.; Howiacki, T. Strain and crack analysis within concrete members using distributed fibre optic sensors. Struct. Health Monit. 2019, 18, 1510–1526. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Yang, P.; Tang, B.; Wei, G. Quantitative strain measurement and crack opening estimate in concrete structures based on OFDR technology. Opt. Fiber Technol. 2020, 60, 102354. [Google Scholar] [CrossRef]
- Buda-Ożóg, L.; Zięba, J.; Sieńkowska, K.; Nykiel, D.; Zuziak, K.; Sieńko, R.; Bednarski, Ł. Distributed fibre optic sensing: Reinforcement yielding strains and crack detection in concrete slab during column failure simulation. Measurement 2022, 195, 111192. [Google Scholar] [CrossRef]
- Cola, S.; Schenato, L.; Brezzi, L.; Tchamaleu Pangop, F.C.; Palmieri, L.; Bisson, A. Composite anchors for slope stabilisation: Monitoring of their in-situ behaviour with optical fibre. Geosciences 2019, 9, 240. [Google Scholar] [CrossRef]
- Monsberger, C.M.; Lienhart, W. Design, Testing, and Realization of a Distributed Fiber Optic Monitoring System to Assess Bending Characteristics Along Grouted Anchors. J. Light. Technol. 2019, 37, 4603–4609. [Google Scholar] [CrossRef]
- Fabris, C.; Schweiger, H.F.; Pulko, B.; Woschitz, H.; Račanský, V. Numerical Simulation of a Ground Anchor Pullout Test Monitored with Fiber Optic Sensors. J. Geotech. Geoenviron. Eng. 2021, 147, 04020163. [Google Scholar] [CrossRef]
- Monsberger, C.; Woschitz, H.; Hayden, M. Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing. J. Appl. Geod. 2016, 10, 61–69. [Google Scholar] [CrossRef]
- Bersan, S.; Bergamo, O.; Palmieri, L.; Schenato, L.; Simonini, P. Distributed strain measurements in a CFA pile using high spatial resolution fibre optic sensors. Eng. Struct. 2018, 160, 554–565. [Google Scholar] [CrossRef]
- Gao, L.; Cao, Y.; Liu, H.L.; Kong, G.Q.; Cheng, X.; Zhang, X.L. Distributed monitoring of deformation of PCC pile under horizontal load using OFDR technology. IOP Conf. Ser. Earth Environ. Sci. 2020, 570, 032064. [Google Scholar] [CrossRef]
- Rogers, A.J. Distributed Optical-Fibre Sensors for the Measurement of Pressure, Strain and Temperature. J. Inst. Electron. Radio Eng. 1988, 58, S113–S122. [Google Scholar] [CrossRef]
- Lagakos, N.; Bucaro, J. Phase-Modulated Fiber Optic Acoustic Sensors. ISA Trans. 1989, 28, 1–6. [Google Scholar] [CrossRef]
- Lagakos, N.; Hickman, T.; Cole, J.; Bucaro, J. Optical Fibers with Reduced Pressure Sensitivity. Opt. Lett. 1981, 6, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Lagakos, N.; Schnaus, E.; Cole, J.; Jarzynski, J.; Bucaro, J. Optimizing Fiber Coatings for Interferometric Acoustic Sensors. IEEE J. Quantum Electron. 1982, 18, 683–689. [Google Scholar] [CrossRef]
- Schenato, L.; Galtarossa, A.; Pasuto, A.; Palmieri, L. Distributed optical fiber pressure sensors. Opt. Fiber Technol. 2020, 58, 102239. [Google Scholar] [CrossRef]
- Becker, M.; Coleman, T.; Ciervo, C.; Cole, M.; Mondanos, M. Fluid Pressure Sensing with Fiber-Optic Distributed Acoustic Sensing. Lead. Edge 2017, 36, 1018–1023. [Google Scholar] [CrossRef]
- Mikhailov, S.; Zhang, L.; Geernaert, T.; Berghmans, F.; Thévenaz, L. Distributed Hydrostatic Pressure Measurement Using Phase-OTDR in a Highly Birefringent Photonic Crystal Fiber. J. Light. Technol. 2019, 37, 4496–4500. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Szostkiewicz, Ł.; Markiewicz, K.; Mikhailov, S.; Geernaert, T.; Rochat, E.; Thévenaz, L. Long-distance distributed pressure sensing based on frequency-scanned phase-sensitive optical time-domain reflectometry. Opt. Express 2021, 29, 20487–20497. [Google Scholar] [CrossRef]
- Gerosa, R.M.; Osorio, J.H.; Lopez-Cortes, D.; Cordeiro, C.M.; De Matos, C.J. Distributed pressure sensing using an embedded-core capillary fiber and optical frequency domain reflectometry. IEEE Sens. J. 2020, 21, 360–365. [Google Scholar] [CrossRef]
- Schenato, L.; Pasuto, A.; Galtarossa, A.; Palmieri, L. An Optical Fiber Distributed Pressure Sensing Cable With Pa-Sensitivity and Enhanced Spatial Resolution. IEEE Sens. J. 2020, 20, 5900–5908. [Google Scholar] [CrossRef]
- Wong, L.; Deo, R.; Rathnayaka, S.; Shannon, B.; Zhang, C.; Chiu, W.K.; Kodikara, J.; Widyastuti, H. Leak Detection in Water Pipes Using Submersible Optical Optic-Based Pressure Sensor. Sensors 2018, 18, 4192. [Google Scholar] [CrossRef]
- Xu, Z.; Kai, C. Research on OFDR Pressure Sensor Based on PDMS. In Advances in Precision Instruments and Optical Engineering, Proceedings of the International Conference on Precision Instruments and Optical Engineering, Chengdu, China, 25–27 August 2021; Springer Nature: Singapore, 2021; p. 19. [Google Scholar]
- Schenato, L.; Aneesh, R.; Palmieri, L.; Galtarossa, A.; Pasuto, A. Fiber optic sensor for hydrostatic pressure and temperature measurement in riverbanks monitoring. Opt. Laser Technol. 2016, 82, 57–62. [Google Scholar] [CrossRef]
- Zhan, Z. Distributed Acoustic Sensing Turns Fiber-Optic Cables into Sensitive Seismic Antennas. Seismol. Res. Lett. 2020, 91, 1–15. [Google Scholar] [CrossRef]
- Lellouch, A.; Lindsey, N.J.; Ellsworth, W.L.; Biondi, B.L. Comparison between Distributed Acoustic Sensing and Geophones: Downhole Microseismic Monitoring of the FORGE Geothermal Experiment. Seismol. Res. Lett. 2020, 91, 3256–3268. [Google Scholar] [CrossRef]
- Mestayer, J.; Cox, B.; Wills, P.; Kiyashchenko, D.; Lopez, J.; Costello, M.; Bourne, S.; Ugueto, G.; Lupton, R.; Solano, G.; et al. Field Trials of Distributed Acoustic Sensing for Geophysical Monitoring. In Proceedings of the SEG Technical Program Expanded Abstracts, San Antonio, TX, USA, 18–23 September 2011; pp. 4253–4257. [Google Scholar] [CrossRef]
- Parker, T.; Shatalin, S.; Farhadiroushan, M. Distributed Acoustic Sensing—A New Tool for Seismic Applications. First Break 2014, 32. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Martin, E.R.; Dreger, D.S.; Freifeld, B.; Cole, S.; James, S.R.; Biondi, B.L.; Ajo-Franklin, J.B. Fiber-Optic Network Observations of Earthquake Wavefields: Fiber-Optic Earthquake Observations. Geophys. Res. Lett. 2017, 44, 11792–11799. [Google Scholar] [CrossRef]
- Sladen, A.; Rivet, D.; Ampuero, J.P.; De Barros, L.; Hello, Y.; Calbris, G.; Lamare, P. Distributed Sensing of Earthquakes and Ocean-Solid Earth Interactions on Seafloor Telecom Cables. Nat. Commun. 2019, 10, 5777. [Google Scholar] [CrossRef]
- Williams, E.F.; Fernández-Ruiz, M.R.; Magalhaes, R.; Vanthillo, R.; Zhan, Z.; González-Herráez, M.; Martins, H.F. Distributed Sensing of Microseisms and Teleseisms with Submarine Dark Fibers. Nat. Commun. 2019, 10, 5778. [Google Scholar] [CrossRef]
- Schenato, L.; Pasuto, A. On the Use of Optical Fiber Sensors for Debris Flow Monitoring: A Review of Recent Achievements. In Advances in Geoengineering along the Belt and Road; Zhu, H.H., Garg, A., Zhussupbekov, A., Su, L.J., Eds.; Springer: Singapore, 2022; pp. 60–70. [Google Scholar]
- Michlmayr, G.; Chalari, A.; Clarke, A.; Or, D. Fiber-optic high-resolution acoustic emission (AE) monitoring of slope failure. Landslides 2017, 14, 1139–1146. [Google Scholar] [CrossRef]
- Schenato, L.; Tecca, P.R.; Deganutti, A.M.; Martins, H.F.; García-Ruiz, A.; del Rosario Fernóndez-Ruiz, M.; Martín-López, S.; Zarattini, F.; Pol, A.; Gabrieli, F.; et al. Distributed acoustic sensing of debris flows in a physical model. In Proceedings of the Optical Fiber Sensors Conference 2020 Special Edition, Alexandria, VA, USA, 8 June 2020; p. Th4.27. [Google Scholar] [CrossRef]
- Ravet, F.; Briffod, F.; Goy, A.; Rochat, E. Mitigation of geohazard risk along transportation infrastructures with optical fiber distributed sensing. J. Civ. Struct. Health Monit. 2021, 11, 967–988. [Google Scholar] [CrossRef]
- Hubbard, P.G.; Xu, J.; Zhang, S.; Dejong, M.; Luo, L.; Soga, K.; Papa, C.; Zulberti, C.; Malara, D.; Fugazzotto, F.; et al. Dynamic structural health monitoring of a model wind turbine tower using distributed acoustic sensing (DAS). J. Civ. Struct. Health Monit. 2021, 11, 833–849. [Google Scholar] [CrossRef]
- Liu, H.; Ma, J.; Yan, W.; Liu, W.; Zhang, X.; Li, C. Traffic Flow Detection Using Distributed Fiber Optic Acoustic Sensing. IEEE Access 2018, 6, 68968–68980. [Google Scholar] [CrossRef]
- Hall, A.; Minto, C. Using Fibre Optic Cables To Deliver Intelligent Traffic Management In Smart Cities. In Proceedings of the International Conference on Smart Infrastructure and Construction 2019 (ICSIC). ICE Publishing, Cambridge, UK, 8–10 July 2019. [Google Scholar] [CrossRef]
- Catalano, E.; Coscetta, A.; Cerri, E.; Cennamo, N.; Zeni, L.; Minardo, A. Automatic traffic monitoring by iϕ/i-OTDR data and Hough transform in a real-field environment. Appl. Opt. 2021, 60, 3579. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Feng, L.; Zhao, D. Application of distributed acoustic sensor technology in train running condition monitoring of the heavy-haul railway. Optik 2019, 181, 343–350. [Google Scholar] [CrossRef]
- Kowarik, S.; Hussels, M.T.; Chruscicki, S.; Münzenberger, S.; Lämmerhirt, A.; Pohl, P.; Schubert, M. Fiber Optic Train Monitoring with Distributed Acoustic Sensing: Conventional and Neural Network Data Analysis. Sensors 2020, 20, 450. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, J.; Wang, M.; Zhong, Y.; Peng, F. Fiber distributed acoustic sensing using convolutional long short-term memory network: A field test on high-speed railway intrusion detection. Opt. Express 2020, 28, 2925. [Google Scholar] [CrossRef]
- Bublin, M. Event Detection for Distributed Acoustic Sensing: Combining Knowledge-Based, Classical Machine Learning, and Deep Learning Approaches. Sensors 2021, 21, 7527. [Google Scholar] [CrossRef] [PubMed]
- Glaser, D.R.; Costley, R.D.; Courville, Z. Distributed Acoustic Sensing of Polar Bear Intrusion at Arctic Research Camps: A Laboratory Feasibility Study. US Army 2021, 26. Available online: https://fasttimesonline.co/distributed-acoustic-sensing-of-polar-bear-intrusion-at-arctic-research-camps-a-laboratory-feasibility-study/ (accessed on 3 August 2022).
- Bouffaut, L.; Taweesintananon, K.; Kriesell, H.J.; Rørstadbotnen, R.A.; Potter, J.R.; Landrø, M.; Johansen, S.E.; Brenne, J.K.; Haukanes, A.; Schjelderup, O.; et al. Eavesdropping at the Speed of Light: Distributed Acoustic Sensing of Baleen Whales in the Arctic. Front. Mar. Sci. 2022, 9, 994. [Google Scholar] [CrossRef]
- Wang, B.; Mao, Y.; Ashry, I.; Al-Fehaid, Y.; Al-Shawaf, A.; Ng, T.K.; Yu, C.; Ooi, B.S. Towards Detecting Red Palm Weevil Using Machine Learning and Fiber Optic Distributed Acoustic Sensing. Sensors 2021, 21, 1592. [Google Scholar] [CrossRef]
- Rathod, R.; Pechstedt, R.D.; Jackson, D.A.; Webb, D.J. Distributed temperature-change sensor based on Rayleigh backscattering in an optical fiber. Opt. Lett. 1994, 19, 593–595. [Google Scholar] [CrossRef]
- Kreger, S.T.; Gifford, D.K.; Froggatt, M.E.; Soller, B.J.; Wolfe, M.S. High Resolution Distributed Strain or Temperature Measurements in Single-and Multi-mode Fiber Using Swept-Wavelength Interferometry. In Proceedings of the Optical Fiber Sensors, Cancun, Mexico, 23–27 October 2006; p. ThE42. [Google Scholar] [CrossRef]
- Sang, A.K.; Froggatt, M.E.; Gifford, D.K.; Dickerson, B.D. One Centimeter Spatial Resolution Temperature Measurements from 25 to 850 °C Using Rayleigh Scatter in Gold Coated Fiber. In Proceedings of the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Baltimore, MD, USA, 6–11 May 2007; p. JTuA77. [Google Scholar]
- Gifford, D.K.; Froggatt, M.E.; Kreger, S.T. High precision, high sensitivity distributed displacement and temperature measurements using OFDR-based phase tracking. In Proceedings of the 21st International Conference on Optical Fiber Sensors, Ottawa, ON, Canada, 15–19 May 2011; Albert, J., Bock, W.J., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2011; Volume 7753, pp. 536–539. [Google Scholar] [CrossRef]
- Inaudi, D.; Glisic, B. textcolorreviewDistributed fiber optic strain and temperature sensing for structural health monitoring. In Proceedings of the Third International Conference on Bridge Maintenance, Safety and Management, Porto, Portugal, 16–19 July 2006; pp. 16–19. [Google Scholar]
- Bersan, S.; Schenato, L.; Rajendran, A.; Palmieri, L.; Cola, S.; Pasuto, A.; Simonini, P. Application of a high resolution distributed temperature sensor in a physical model reproducing subsurface water flow. Measurement 2017, 98, 321–324. [Google Scholar] [CrossRef]
- Tosi, D.; Schena, E.; Molardi, C.; Korganbayev, S. Fiber optic sensors for sub-centimeter spatially resolved measurements: Review and biomedical applications. Opt. Fiber Technol. 2018, 43, 6–19. [Google Scholar] [CrossRef]
- Beisenova, A.; Issatayeva, A.; Sovetov, S.; Korganbayev, S.; Jelbuldina, M.; Ashikbayeva, Z.; Blanc, W.; Schena, E.; Sales, S.; Molardi, C.; et al. Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers. Biomed. Opt. Express 2019, 10, 1282–1296. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Buric, M.P.; Byerly, K.; Moon, S.R.; Nazmunnahar, M.; Simizu, S.; Leary, A.M.; Beddingfield, R.B.; Sun, C.; Zandhuis, P.; et al. Real-time monitoring of temperature rises of energized transformer cores with distributed optical fiber sensors. IEEE Trans. Power Deliv. 2019, 34, 1588–1598. [Google Scholar] [CrossRef]
- Badar, M.; Lu, P.; Wang, Q.; Boyer, T.; Chen, K.P.; Ohodnicki, P.R. Real-time optical fiber-based distributed temperature monitoring of insulation oil-immersed commercial distribution power transformer. IEEE Sens. J. 2021, 21, 3013–3019. [Google Scholar] [CrossRef]
- Buric, M.; Ohodnicki, P.; Yan, A.; Huang, S.; Chen, K.P. Distributed fiber-optic sensing in a high-temperature solid-oxide fuel cell. In Proceedings of the Remote Sensing System Engineering VI, San Diego, CA, USA, 31 August–1 September 2016; Ardanuy, P.E., Puschell, J.J., Eds.; SPIE: Bellingham, WA, USA, 2016. [Google Scholar]
- Yan, A.; Huang, S.; Li, S.; Chen, R.; Ohodnicki, P.; Buric, M.; Lee, S.; Li, M.J.; Chen, K.P. Distributed optical fiber sensors with ultrafast laser enhanced Rayleigh backscattering profiles for real-time monitoring of solid oxide fuel cell operations. Sci. Rep. 2017, 7, 9360. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.O.; Lee, S.; Song, S.H.; Yoo, J. Development of a distributed optical thermometry technique for battery cells. Int. J. Heat Mass Transf. 2022, 194, 123020. [Google Scholar] [CrossRef]
- Rizzolo, S.; Périsse, J.; Boukenter, A.; Ouerdane, Y.; Marin, E.; Macé, J.R.; Cannas, M.; Girard, S. Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors. Sci. Rep. 2017, 7, 8766. [Google Scholar] [CrossRef]
- Boldyreva, E.; Cotillard, R.; Laffont, G.; Ferdinand, P.; Cambet, D.; Jeannot, J.P.; Charvet, P.; Albaladéjo, S.; Rodriguez, G. Distributed temperature monitoring for liquid sodium leakage detection using OFDR-based Rayleigh backscattering. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2–6 June 2014; López-Higuera, J.M., Jones, J.D.C., López-Amo, M., Santos, J.L., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2014; Volume 9157, pp. 945–948. [Google Scholar] [CrossRef]
- Armiroli, S.; Cotillard, R.; Laffont, G.; Girard, M.; Cambet, D.; Jeannot, J.P.; Charvet, P.; Albaladéjo, S.; Lusso, S. Optical fiber distributed sensing based on Rayleigh scatter frequency domain reflectometry for Sodium leakage detection within SFR reactors. EPJ Web Conf. 2018, 170, 03001. [Google Scholar] [CrossRef]
- Bulot, P.; Cristini, O.; Bouet, M.; Demol, A.; Bigot, L.; Bouwmans, G.; Plus, S.; Habert, R.; Laffont, G.; Douay, M. OFDR distributed temperature sensing at 800 °C on a fiber with enhanced Rayleigh scattering profile by doping. In Proceedings of the Advanced Photonics 2018, Zurich, Switzerland, 2–5 July 2018; p. BM3A.2. [Google Scholar] [CrossRef]
- Chen, C.; Gao, S.; Chen, L.; Bao, X. Distributed high temperature monitoring of SMF under electrical arc discharges based on OFDR. Sensors 2020, 20, 6407. [Google Scholar] [CrossRef]
- Jones, J.T.; Sweeney, D.C.; Birri, A.; Petrie, C.M.; Blue, T.E. Calibration of Distributed Temperature Sensors Using Commercially Available SMF-28 Optical Fiber From 22 °C to 1000 °C. IEEE Sens. J. 2022, 22, 4144–4151. [Google Scholar] [CrossRef]
- Chiuchiolo, A.; Palmieri, L.; Consales, M.; Giordano, M.; Borriello, A.; Bajas, H.; Galtarossa, A.; Bajko, M.; Cusano, A. Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors. Opt. Lett. 2015, 40, 4424–4427. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Liu, T.; Ding, Z.; Han, Q.; Liu, K.; Jiang, J.; Chen, Q.; Feng, B. Cryogenic Temperature Measurement Using Rayleigh Backscattering Spectra Shift by OFDR. IEEE Photonics Technol. Lett. 2014, 26, 1150–1153. [Google Scholar] [CrossRef]
- Marcon, L.; Chiuchiolo, A.; Castaldo, B.; Bajas, H.; Galtarossa, A.; Bajko, M.; Palmieri, L. The Characterization of Optical Fibers for Distributed Cryogenic Temperature Monitoring. Sensors 2022, 22, 4009. [Google Scholar] [CrossRef] [PubMed]
- Jäckle, S.; Eixmann, T.; Schulz-Hildebrandt, H.; Hüttmann, G.; Pätz, T. Fiber optical shape sensing of flexible instruments for endovascular navigation. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 2137–2145. [Google Scholar] [CrossRef]
- Parent, F.; Loranger, S.; Mandal, K.K.; Iezzi, V.L.; Lapointe, J.; Boisvert, J.S.; Baiad, M.D.; Kadoury, S.; Kashyap, R. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers. Biomed. Opt. Express 2017, 8, 2210–2221. [Google Scholar] [CrossRef] [PubMed]
- Issatayeva, A.; Amantayeva, A.; Blanc, W.; Tosi, D.; Molardi, C. Design and analysis of a fiber-optic sensing system for shape reconstruction of a minimally invasive surgical needle. Sci. Rep. 2021, 11, 8609. [Google Scholar] [CrossRef] [PubMed]
- van Herwaarden, J.A.; Jansen, M.M.; Jan, P.A.; Vonken, E.; Bloemert-Tuin, T.; Bullens, R.W.; de Borst, G.J.; Hazenberg, C.E. First in Human Clinical Feasibility Study of Endovascular Navigation with Fiber Optic RealShape (FORS) Technology. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 317–325. [Google Scholar] [CrossRef]
- Megens, M.; Leistikow, M.D.; van Dusschoten, A.; van der Mark, M.B.; Horikx, J.J.L.; van Putten, E.G.; Hooft, G.W. Shape accuracy of fiber optic sensing for medical devices characterized in bench experiments. Med. Phys. 2021, 48, 3936–3947. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, L.; Wei, H.; Gu, Y.; Pang, F.; Liu, H.; Wang, T. Quasi-Distributed Magnetic Field Fiber Sensors Integrated with Magnetostrictive Rod in OFDR System. Electronics 2022, 11, 1013. [Google Scholar] [CrossRef]
- Ross, J.N. Measurement of Magnetic Field by Polarisation Optical Time-Domain Reflectometry. Electron. Lett. 1981, 17, 596–597. [Google Scholar] [CrossRef]
- Palmieri, L.; Sarchi, D.; Galtarossa, A. Distributed Measurement of High Electric Current by Means of Polarimetric Optical Fiber Sensor. Opt. Express 2015, 23, 11073–11079. [Google Scholar] [CrossRef] [PubMed]
- Someda, C.G. Electromagnetic Waves; CRC/Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Moler, C.; Van Loan, C. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Rev. 2003, 45, 3–49. [Google Scholar] [CrossRef] [Green Version]
- Gordon, J.P.; Kogelnik, H. PMD Fundamentals: Polarization Mode Dispersion in Optical Fibers. Proc. Natl. Acad. Sci. USA 2000, 97, 4541–4550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters (Technology) | Applications | Main Features | Open Issues | References |
---|---|---|---|---|
Strain (OFDR) | Small- and medium-scale physical models or devices; crack detection; geotechnical monitoring of anchors and piles | High sensitivity; ultra-high spatial resolution | Small distance range; temperature compensation | [61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89] |
Pressure (OFDR) | General pressure measurements; water level monitoring | High spatial resolution | Limited sensitivity | [90,91,92,93,94,95,96,97,98,99,100,101,102] |
Acoustic field (-OTDR) | Seismic monitoring and VSP surveys; landslide and debris flows detecting and tracking; structural health monitoring; road and train traffic; perimeter and pipeline patrolling; fauna and insects detection | Long range; large number of sensing points; retrofitting of black fibers | Huge data storage; complex data analysis | [103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124] |
Temperature (OFDR) | Small scale physical model; biomedical engineering; monitoring of transformer cores; fuel-cells or Li-ion batteries; application in harsh environments (high radiation and cryogenic environments) | High spatial resolution; extended temperature range | Relative measurement; small distance range | [43,125,126,127,128,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146] |
Shape and Twist (OFDR and POTDR) | Measurements of shape profiles; biomedical applications (endoscopes tracking) | High spatial resolution | Limited absolute position precision | [59,60,147,148,149,150,151] |
Magnetic field and Electric current (POTDR) | MRI field characterization; high-energy cable current measurement | High spatial resolution; EMI-proof | Limited sensitivity | [32,36,57,152,153,154] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmieri, L.; Schenato, L.; Santagiustina, M.; Galtarossa, A. Rayleigh-Based Distributed Optical Fiber Sensing. Sensors 2022, 22, 6811. https://doi.org/10.3390/s22186811
Palmieri L, Schenato L, Santagiustina M, Galtarossa A. Rayleigh-Based Distributed Optical Fiber Sensing. Sensors. 2022; 22(18):6811. https://doi.org/10.3390/s22186811
Chicago/Turabian StylePalmieri, Luca, Luca Schenato, Marco Santagiustina, and Andrea Galtarossa. 2022. "Rayleigh-Based Distributed Optical Fiber Sensing" Sensors 22, no. 18: 6811. https://doi.org/10.3390/s22186811
APA StylePalmieri, L., Schenato, L., Santagiustina, M., & Galtarossa, A. (2022). Rayleigh-Based Distributed Optical Fiber Sensing. Sensors, 22(18), 6811. https://doi.org/10.3390/s22186811