A Wirelessly Powered 4-Channel Neurostimulator for Reconstructing Walking Trajectory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Four-Channel Neurostimulator
2.2.1. Transmitter Circuit for Four-Channel Neurostimulator
2.2.2. Receiver Circuit for Four-Channel Neurostimulator
2.3. Selective Stimulation of Four Nerves in a Rat
2.4. Visual Feedback Control of Two Joints in a Rat
3. Results
3.1. Selective Stimulation of Four Nerves in a Rat
3.2. Visual Feedback Control of Rat Ankle and Knee Joints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajiboye, A.B.; Willett, F.R.; Young, D.R.; Memberg, W.D.; Murphy, B.A.; Miller, J.P.; Walter, B.L.; Sweet, J.A.; Hoyen, H.A.; Keith, M.W.; et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: A proof-of-concept demonstration. Lancet 2017, 389, 1821–1830. [Google Scholar] [CrossRef]
- Bouton, C.E.; Shaikhouni, A.; Annetta, N.V.; Bockbrader, M.A.; Friedenberg, D.A.; Nielson, D.M.; Sharma, G.; Sederberg, P.B.; Glenn, B.C.; Mysiw, W.J.; et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 2016, 533, 247–250. [Google Scholar] [CrossRef]
- Memberg, W.D.; Polasek, K.H.; Hart, R.L.; Bryden, A.M.; Kilgore, K.L.; Nemunaitis, G.A.; Hoyen, H.A.; Keith, M.W.; Kirsch, R.F. Implanted neuroprosthesis for restoring arm and hand function in people with high level tetraplegia. Arch. Phys. Med. Rehabil. 2014, 95, 1201–1211. [Google Scholar] [CrossRef]
- Santos, E.L.; Gelain, M.C.; Krueger, E.; Nogueira-Neto, G.N.; Nohama, P. Artificial motor control for electrically stimulated upper limbs of plegic or paretic people. Res. Biomed. Eng. 2016, 32, 199–211. [Google Scholar] [CrossRef]
- Kurimoto, S.; Kato, S.; Nakano, T.; Yamamoto, M.; Takanobu, N.; Hirata, H. Transplantation of embryonic motor neurons into peripheral nerve combined with functional electrical stimulation restores functional muscle activity in the rat sciatic nerve transection model. J. Tissue Eng. Regen. Med. 2016, 10, 477–484. [Google Scholar] [CrossRef]
- Kato, S.; Kurimoto, S.; Nakano, T.; Yoneda, H.; Ishii, H.; Mita-Sugiura, S.; Hirata, H. Successful Transplantation of Motoneurons into the Peripheral Nerve depends on the Number of Transplanted Cells. Nagoya J. Med. Sci. 2015, 77, 253–263. [Google Scholar]
- Ragnarsson, K.T. Functional electrical stimulation after spinal cord injury: Current use, therapeutic effects and future directions. Spinal Cord 2007, 46, 255–274. [Google Scholar] [CrossRef]
- Tokutake, K.; Takeuchi, M.; Kurimoto, S.; Saeki, S.; Asami, Y.; Onaka, K.; Saeki, M.; Aoyama, T.; Hasegawa, Y.; Hirata, H. A Therapeutic Strategy for Lower Motor Neuron Disease and Injury Integrating Neural Stem Cell Transplantation and Functional Electrical Stimulation in a Rat Model. Int. J. Mol. Sci. 2022, 23, 8760. [Google Scholar] [CrossRef]
- Deshmukh, A.; Brown, L.; Barbe, M.F.; Braverman, A.S.; Tiwari, E.; Hobson, L.; Shunmugam, S.; Armitage, O.; Hewage, E.; Ruggieri, M.R.; et al. Fully implantable neural recording and stimulation interfaces: Peripheralnerve interface applications. J. Neurosci. Methods 2020, 333, 108562. [Google Scholar] [CrossRef]
- Thakor, N.V.; Wang, Q.; Greenwald, E. Bidirectional Peripheral Nerve Interface and Applications. In Proceedings of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 16–20 August 2016; pp. 6327–6330. [Google Scholar]
- Hügl, S.; Rxuxlander, K.; Lenarz, T.; Majdani, O.; Rau, T.S. Investigation of ultra-low insertion speeds in an inelastic artificial cochlear model using custom-made cochlear implant electrodes. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 2947–2956. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, J.S.; Kim, G.W. A Novel Frequency Selectivity Approach Based on Travelling Wave Propagation in Mechanoluminescence Basilar Membrane for Artificial Cochlea. Sci. Rep. 2018, 8, 12023. [Google Scholar] [CrossRef] [Green Version]
- Parastarfeizabadi, M.; Kouzani, A.Z. Advances in closed-loop deep brain stimulation devices. J. Neuro Eng. Rehabil. 2017, 14, 79. [Google Scholar] [CrossRef]
- Broccard, F.D.; Mullen, T.; Chi, Y.M.; Peterson, D.; Iversen, J.R.; Arnold, M.; Kreutz-Delgado, K.; Jung, T.P.; Makeig, S.; Poizner, H.; et al. Closed-loop Brain-Machine-Body Interfaces for Noninvasive Rehabilitation of Movement Disorders. Ann. Biomed. Eng. 2014, 42, 1573–1593. [Google Scholar] [CrossRef]
- Little, S.; Brown, P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Ann. N. Y. Acad. Sci. 2012, 1265, 9–24. [Google Scholar] [CrossRef]
- Kaniusas, E.; Kampusch, S.; Tittgemeyer, M.; Panetsos, F.; Gines, R.F.; Papa, M.; Kiss, A.; Podesser, B.; Cassara, A.M.; Tanghe, E.; et al. Current Directions in the Auricular Vagus Nerve Stimulation II—An Engineering Perspective. Front. Neurosci. 2019, 13, 772. [Google Scholar] [CrossRef]
- Romero-Ugalde, H.M.; Rolle, V.L.; Bonnet, J.L.; Henry, C.; Mabo, P.; Carrault, G.; Hernández, A.I. Closed-loop vagus nerve stimulation based on state transition models. IEEE Trans. Biomed. Eng. 2018, 65, 1630–1638. [Google Scholar] [CrossRef]
- Wright, J.; Macefield, V.G.; van Schaik, A.; Tapson, J.C. A review of control strategies in closed-loop neuroprosthetic systems. Front. Neurosci. 2016, 10, 312. [Google Scholar] [CrossRef]
- Anopas, D.; Chew, S.Y.; Lin, J.; Wee, S.K.; Er, T.P.; Ang, W.T. A developmental rehabilitation robotic system for a rat with complete thoracic spinal cord injury in quadruped posture. IEEE Robot. Autom. Lett. 2020, 3, 2109–2115. [Google Scholar] [CrossRef]
- Miyamoto, T.; Takeuchi, M.; Aoyama, T.; Nakano, T.; Kurimoto, S.; Hirata, H.; Hasegawa, Y. Peripheral nerve stimulation device enabling adjustment of stimulation voltage. In Proceedings of the International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, Japan, 9–12 December 2018; pp. 328–330. [Google Scholar]
- Takeuchi, M.; Watanabe, K.; Ishihara, K.; Miyamoto, T.; Tokutake, K.; Saeki, S.; Aoyama, T.; Hasegawa, Y.; Kurimoto, S.; Hirata, H. Visual feedback control of a rat ankle angle using a wirelessly powered two-channel neurostimulator. Sensors 2020, 20, 2210. [Google Scholar] [CrossRef]
- Tran, M.; Gabert, L.; Cempini, M.; Lenzi, T. A lightweight, efficient fully-powered knee prosthesis with actively variable transmission. IEEE Robot. Autom. Lett. 2019, 4, 1186–1193. [Google Scholar] [CrossRef]
- Thatte, N.; Shah, T.; Geyer, H. Robust and adaptive lower lomb prosthesis stance control via extended kalman filter-based gait phase estimation. IEEE Robot. Autom. Lett. 2019, 4, 3129–3136. [Google Scholar] [CrossRef]
- Kiani, M.; Jow, U.M.; Ghovanloo, M. Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 579–591. [Google Scholar] [CrossRef]
- Cho, S.H.; Xue, N.; Cauller, L.; Rosellini, W.; Lee, J.B. A SU-8-Based Fully Integrated Biocompatible Inductively Powered Wireless Neurostimulator. J. Microelectromech. Syst. 2013, 22, 170–176. [Google Scholar] [CrossRef]
- Shen, A.; Chu, J.U.; Jung, J.; Kim, H.; Youn, I. An implantable wireless neural interface system for simultaneous recording and stimulation of peripheral nerve with a single cuff electrode. Sensors 2020, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Piech, D.K.; Johnson, B.C.; Shen, K.; Ghanbari, M.M.; Li, K.Y.; Neely, R.M.; Kay, J.E.; Carmena, J.M.; Maharbiz, M.M.; Muller, R. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nature Biomed. Eng. 2020, 4, 207–222. [Google Scholar] [CrossRef]
- Shon, A.; Brakel, K.; Hook, M.; Park, H. Fully Implantable Plantar Cutaneous Augmentation System for Rats Using Closed-loop Electrical Nerve Stimulation. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 326–338. [Google Scholar] [CrossRef]
- Mickle, A.D.; Won, S.M.; Noh, K.N.; Yoon, J.; Meacham, K.W.; Xue, Y.; McIlvried, L.A.; Copits, B.A.; Samineni, V.K.; Crawford, K.E.; et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 2019, 565, 361–365. [Google Scholar] [CrossRef]
- Park, H.J.; Durang, D.M. Motion control of the rabbit ankle joint with a flat interface nerve electrode. Muscle Nerve 2015, 52, 1088–1095. [Google Scholar] [CrossRef]
- Gelenitis, K.T.; Sanner, B.M.; Triolo, R.J.; Tyler, D.J. Selective nerve cuff stimulation strategies for prolonging muscle output. IEEE Trans. Biomed. Eng. 2019, 67, 1397–1408. [Google Scholar] [CrossRef]
- Downey, R.J.; Bellman, M.J.; Kawai, H.; Gregory, C.M.; Dixon, W.E. Comparing the induced muscle fatigue between asynchronous and synchronous electrical stimulation in able-bodied and spinal cord injured populations. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 23, 964–972. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeuchi, M.; Tokutake, K.; Watanabe, K.; Ito, N.; Aoyama, T.; Saeki, S.; Kurimoto, S.; Hirata, H.; Hasegawa, Y. A Wirelessly Powered 4-Channel Neurostimulator for Reconstructing Walking Trajectory. Sensors 2022, 22, 7198. https://doi.org/10.3390/s22197198
Takeuchi M, Tokutake K, Watanabe K, Ito N, Aoyama T, Saeki S, Kurimoto S, Hirata H, Hasegawa Y. A Wirelessly Powered 4-Channel Neurostimulator for Reconstructing Walking Trajectory. Sensors. 2022; 22(19):7198. https://doi.org/10.3390/s22197198
Chicago/Turabian StyleTakeuchi, Masaru, Katsuhiro Tokutake, Keita Watanabe, Naoyuki Ito, Tadayoshi Aoyama, Sota Saeki, Shigeru Kurimoto, Hitoshi Hirata, and Yasuhisa Hasegawa. 2022. "A Wirelessly Powered 4-Channel Neurostimulator for Reconstructing Walking Trajectory" Sensors 22, no. 19: 7198. https://doi.org/10.3390/s22197198