Constrained Planar Array Thinning Based on Discrete Particle Swarm Optimization with Hybrid Search Strategies
Abstract
:1. Introduction
2. Optimization Model
3. Improved Algorithm
3.1. Fundamental PSO Algorithm
3.2. DPSO with Hybrid Search Strategies
3.2.1. Global Learning Strategy
3.2.2. Local Search Strategy
3.2.3. Particle Movement Condition Monitoring
3.3. Steps of Algorithm
Algorithm 1: DPSO with hybrid search strategies |
1. Generate the initial particle swarm that satisfying the conditions. Initialize pBesti, gWorst, and gBest. Initialize observation parameters Tpbi and Txbi. Initialize the solution set PG. 2. Calculate the fitness function value of each particle and update pBesti, gWorst, gBest, and Tpbi. Replenish the set PG with the good solutions that have been eliminated. 3. Update the velocity and position of the particle according to (16), (9), and (10). Determine whether the number of iterations t is larger than tL. If so, go to Step 4. Otherwise, go to Step 5. 4. Initiate the local search strategy. 5. Determine whether Tpbi> u and Txbi> h are both valid. If so, update the position of the particle according to (21). Otherwise, go to Step 6. 6. Constrain the particle position according to the constraint condition and update the parameter Txbi. 7. Do boundary treatment for particle velocity. 8. Output gBest. Determine whether the termination conditions are met. If so, end the optimization. Otherwise, t = t + 1, and return to Step 2. |
4. Numerical Results and Analysis
4.1. Simulation 1: Function Optimization Tests
- The mean value of multiple simulation results;
- The variance of multiple simulation results;
- The minimum value of multiple simulations.
4.2. Simulation 2: Application in Planar Array Thinning with Constraints
4.3. Simulation 3: Beam Pattern of The Optimized Array with Different Main Beam Positions
4.4. Simulation 4: Synthesis Results of Four Algorithms for Large Planar Thinned Arrays
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Liu, Q.H.; Nie, Z. Reducing the Number of Elements in Multiple-Pattern Linear Arrays by the Extended Matrix Pencil Methods. IEEE Trans. Antennas Propag. 2014, 62, 652–660. [Google Scholar] [CrossRef]
- Haupt, R.L. Adaptively Thinned Arrays. IEEE Trans. Antennas Propag. 2015, 63, 1626–1632. [Google Scholar] [CrossRef]
- Rahardjo, E.T.; Sandi, E.; Zulkifli, F.Y. Design of Linear Sparse Array Based on the Taylor Line Source Distribution Element Spacing. In Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 13–16 November 2017. [Google Scholar]
- Cao, A.; Li, H.; Ma, S.; Jing, T.; Zhou, J. Sparse circular array pattern optimization based on MOPSO and convex optimization. In Proceedings of the 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015. [Google Scholar]
- Liu, X.; Hu, F.; Wei, X.; Yu, D.; Gang, G. Cuboid sparse array synthesis for sensor selection by convex optimization with constrained beam pattern based on WBAN. In Proceedings of the International Conference on Wireless Communications & Signal Processing, Nanjing, China, 15–17 December 2015. [Google Scholar]
- Keizer, W. Linear Array Thinning Using Iterative FFT Techniques. IEEE Trans. Antennas Propag. 2008, 56, 2757–2760. [Google Scholar] [CrossRef]
- Gu, L.; Zhao, Y.W.; Zhang, Z.P.; Wu, L.F.; Hu, J. Adaptive Learning of Probability Density Taper for Large Planar Array Thinning. IEEE Trans. Antennas Propag. 2020, 69, 155–163. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Shao, W.; Zhang, S.J.; Li, Y.P. An Improved Multi-Objective Genetic Algorithm for Large Planar Array Thinning. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Dai, D.; Yao, M.; Ma, H.; Wei, J.; Zhang, F. An Asymmetric Mapping Method for the Synthesis of Sparse Planar Arrays. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 70–73. [Google Scholar] [CrossRef]
- Durmus, A. Novel Metaheuristic Optimization Algorithms for Sidelobe Suppression of Linear Antenna Array. In Proceedings of the 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 21–23 October 2021; pp. 291–294. [Google Scholar]
- Guo, J.; Xue, P.; Zhang, C. Optimal Design of Linear and Circular Antenna Arrays Using Hybrid GWO-PSO Algorithm. In Proceedings of the 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST), Guangzhou, China, 10–12 December 2021; pp. 138–141. [Google Scholar]
- Vankayalapati, S.; Pappula, L.; Kumar, K.; Panda, P.K. Thinned Planar Antenna Array Synthesis: A Multiobjective Improved Binary Cat Swarm Optimization Approach. In Proceedings of the 2021 7th International Conference on Signal Processing and Communication (ICSC), Noida, India, 25–27 November 2021; pp. 129–132. [Google Scholar]
- Brahma, D.; Deb, A. Optimal Design of Antenna Array using Tuned Random Drift Particle Swarm Optimization Algorithm. In IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS); IEEE: Vancouver, BC, Canada, 2020. [Google Scholar]
- Bera, R.; Mandal, D.; Ghoshal, S.P.; Kar, R. Wavelet Mutation based Novel Particle Swarm Optimization technique for comparison of the performance of single ring planar antenna arrays. In Proceedings of the 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 6–8 April 2016. [Google Scholar]
- Zhang, H.; Zheng, J.; Bai, B.; Zhou, Y. Optimal Design of Sparse Array for Ultrasonic Total Focusing Method by Binary Particle Swarm Optimization. IEEE Access 2020, 8, 111945–111953. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, J.; Zhang, Y.; Lu, M.; Li, R.; Liu, X.; Liu, Y.; Yang, R.; Wang, X.; Geng, Y.; et al. Multiple-Focus Patterns of Sparse Random Array Using Particle Swarm Optimization for Ultrasound Surgery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; He, F.; Chen, Y.; Luo, J. Multi-objective Self-organizing Optimization for Constrained Sparse Array Synthesis. Swarm Evol. Comput. 2020, 58, 100743. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Li, X. Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology. IEEE Trans. Evol. Comput. 2010, 14, 150–169. [Google Scholar] [CrossRef]
- Doraghinejad, M.; Nezamabadi-pour, H.; Sadeghian, A.H.; Maghfoori, M. A hybrid algorithm based on gravitational search algorithm for unimodal optimization. In Proceedings of the 2012 2nd International eConference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 18–19 October 2012; pp. 129–132. [Google Scholar]
- Miranda, A.V.; Ashwin, P.; Sharan, P.; Gangwar, V.S.; Singh, A.K.; Singh, S.P. An efficient synthesis of unequally spaced antenna array with electronic scan capability utilizing particle swarm optimization. In Proceedings of the 2017 IEEE MTT-S International Microwave and RF Conference (IMaRC), Ahmedabad, India, 11–13 December 2017; pp. 255–258. [Google Scholar]
Name | Range | Dimension | Minimum | Population | Runing time | Number of Iterations |
---|---|---|---|---|---|---|
Ackley | −30 ≤ xi ≤ 30 | 10 | 0 | 150 | 50 | 500 |
Rastrigin | −10 ≤ xi ≤ 10 | 10 | 0 | 200 | 50 | 1000 |
Sphere | −10 ≤ xi ≤ 10 | 30 | 0 | 100 | 100 | 500 |
Rosenbrock | −30 ≤ xi ≤ 30 | 10 | 0 | 200 | 50 | 1000 |
Griewank | −30 ≤ xi ≤ 30 | 10 | 0 | 100 | 100 | 500 |
Function | Statistical Properties | DPSO-HSS | RDPSO [13] | NPSOWM [14] |
---|---|---|---|---|
Ackley | Mean | 0.0096 | 2.8385 | 2.7257 |
Variance | 0.0005 | 1.2229 | 0.2512 | |
Minimum | 0.0024 | 6.9407 × 10−5 | 1.4062 | |
Rastrigin | Mean | 7.5486 | 11.8201 | 32.1085 |
Variance | 9.4548 | 25.2794 | 98.8685 | |
Minimum | 2.0026 | 3.9798 | 13.7634 | |
Sphere | Mean | 1.2493 | 2.1050 | 5.0407 |
Variance | 0.2234 | 1.8791 | 1.7301 | |
Minimum | 0.5369 | 0.3208 | 2.2356 | |
Rosenbrock | Mean | 3.8523 | 2.3869 | 39.3544 |
Variance | 0.6871 | 7.4421 | 2.0763 × 103 | |
Minimum | 1.3338 | 1.3120 × 10−13 | 6.9166 | |
Griewank | Mean | 0.0801 | 0.0764 | 0.3513 |
Variance | 0.0027 | 0.0031 | 0.0104 | |
Minimum | 0.0353 | 1.9080 × 10−6 | 0.1228 |
Aperture Diameter (×λ) | Fill Factor (%) | PSLL (dB) | 3 dB Beamwidth (u) | |||
---|---|---|---|---|---|---|
DPSO-HSS | RDPSO [13] | NPSOWM [14] | MOPSO-CO [4] | |||
5 | 100 | −12.97 | −12.97 | −12.97 | −12.97 | 0.179 |
5 | 90 | −15.46 | −15.25 | −15.31 | −15.38 | 0.182 |
5 | 80 | −16.23 | −15.83 | −16.07 | −16.12 | 0.185 |
5 | 70 | −16.84 | −16.48 | −16.53 | −16.70 | 0.181 |
5 | 60 | −15.90 | −15.59 | −15.76 | −15.64 | 0.180 |
6 | 60 | −16.72 | −16.49 | −16.62 | −16.55 | 0.159 |
7.5 | 60 | −16.81 | −16.45 | −16.78 | −16.57 | 0.125 |
9 | 60 | −17.19 | −16.77 | −17.02 | −16.99 | 0.105 |
10 | 60 | −17.43 | −16.98 | −17.14 | −17.23 | 0.094 |
10 | 50 | −18.01 | −17.45 | −17.66 | −17.89 | 0.096 |
10 | 40 | −16.84 | −16.41 | −16.53 | −16.59 | 0.095 |
10 | 30 | −15.45 | −15.06 | −15.18 | −15.13 | 0.095 |
10 | 20 | −13.01 | −12.83 | −12.99 | −12.92 | 0.092 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, W.; Ji, L.; Guo, C.; Mei, K.; Zeng, H. Constrained Planar Array Thinning Based on Discrete Particle Swarm Optimization with Hybrid Search Strategies. Sensors 2022, 22, 7656. https://doi.org/10.3390/s22197656
Cai W, Ji L, Guo C, Mei K, Zeng H. Constrained Planar Array Thinning Based on Discrete Particle Swarm Optimization with Hybrid Search Strategies. Sensors. 2022; 22(19):7656. https://doi.org/10.3390/s22197656
Chicago/Turabian StyleCai, Wanhan, Lixia Ji, Chenglin Guo, Ke Mei, and Hao Zeng. 2022. "Constrained Planar Array Thinning Based on Discrete Particle Swarm Optimization with Hybrid Search Strategies" Sensors 22, no. 19: 7656. https://doi.org/10.3390/s22197656
APA StyleCai, W., Ji, L., Guo, C., Mei, K., & Zeng, H. (2022). Constrained Planar Array Thinning Based on Discrete Particle Swarm Optimization with Hybrid Search Strategies. Sensors, 22(19), 7656. https://doi.org/10.3390/s22197656