Sub-Block Urban Function Recognition with the Integration of Multi-Source Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Definition of UFA Types
2.3.2. Blocks Segmentation
2.3.3. Extraction of Building Features
2.3.4. Extraction of Socioeconomic Features
2.3.5. Extracting Image Features
2.3.6. Sample Selection
2.3.7. Sub-Block-Level UFA Function Recognition
2.3.8. Comparing the Recognition Effects of Different Features
3. Results
3.1. Recognition Results of UFAs
3.2. Comparison of the Recognition Effects with Different Feature Factors
3.2.1. Comparison of the Classification Accuracy of Single-Function Areas
3.2.2. Comparison of the Classification Accuracy of Mixed-Function Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, G.; Li, C.; Li, M.; Zhang, J.; Liu, Y. Agglomeration and diffusion of urban functions: An approach based on urban land use conversion. Habitat Int. 2016, 56, 20–30. [Google Scholar] [CrossRef]
- Wei, Y.D.; Ye, X. Urbanization, urban land expansion and environmental change in China. Stoch. Environ. Res. Risk Assess. 2014, 28, 757–765. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J.; Liu, Y.; Luo, A. Detecting Urban Polycentric Structure from POI Data. Int. J. Geo Inf. 2019, 8, 283. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Deng, Y.; Li, M.; Yang, J.; Liu, T. Classification schemes and identification methods for urban functional zone: A Review of Recent Papers. Appl. Sci. 2021, 11, 9968. [Google Scholar] [CrossRef]
- Chi, J.; Jiao, L.; Dong, T.; Gu, Y.; Ma, Y. Quantitative Identification and Visualization of Urban Functional Area Based on POI Data. J. Geomat. 2016, 41, 68–73. [Google Scholar] [CrossRef]
- Xue, B.; Li, J.; Xiao, X.; Xie, X.; Lu, C.; Ren, W.; Jiang, L. Overview of man-land relationship research based on POI data: Theory, Method, and Application. Geogr. Geo Inf. Sci. 2019, 35, 51–60. [Google Scholar] [CrossRef]
- Huang, N.; Zhang, L.; Liu, Q.; Wang, P. The Research on Approach and Method of Sustainable Development-based Urban Functional Zoning and Application. Urban Dev. Stud. 2009, 16, 63–70. [Google Scholar] [CrossRef]
- Gu, J.; Chen, X.; Yang, H. Spatial clustering algorithm on urban function oriented zone. Sci. Surv. Mapp. 2011, 36, 64–67. [Google Scholar] [CrossRef]
- Wu, W.; Xu, Z.; Yang, X. Quantitative research of spatial development differentiation in Xi’an from the perspective of urban functional zoning. Geogr. Res. 2012, 31, 2173–2184. [Google Scholar]
- Li, Y.; Liu, C.; Li, Y. Identification of Urban Functional Areas and Their Mixing Degree Using Point of Interest Analyses. Land 2022, 11, 996. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, D. Study of land cover classification based on knowledge rules using high-resolution remote sensing images. Expert Syst. Appl. 2011, 38, 3647–3652. [Google Scholar] [CrossRef]
- Hu, S.; Wang, L. Automated urban land-use classification with remote sensing. Int. J. Remote Sens. 2013, 34, 790–803. [Google Scholar] [CrossRef]
- Huang, C.; Deng, L.; Fang, C. Satellite Remote Sensing and Dynamic Variation of Urban Land Use Changes—Taking Chengdu City as an Example. J. Geo Inf. Sci. 2007, 9, 118–123. [Google Scholar] [CrossRef]
- Kuang, W.; Zhang, S.; Liu, J.; Shao, Q. Methodology for classifying and detecting intra-urban land use change: A case study of Changchun city during the last 100 years. J. Remote Sens. 2010, 14, 345–355. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, C.; Yang, Y. Land-cover and land-use classification based on remote sensing intelligent Geo-interpreting model. J. Nat. Resour. 2001, 16, 179–183. [Google Scholar] [CrossRef]
- Zhang, X.; Du, S.; Wang, Q. Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data. ISPRS J. Photogramm. Remote Sens. 2017, 132, 170–184. [Google Scholar] [CrossRef]
- Lu, C.; Pang, M.; Zhang, Y.; Li, H.; Lu, C.; Tang, X.; Cheng, W. Mapping urban spatial structure based on poi (point of interest) data: A case study of the central city of Lanzhou, China. ISPRS Int. J. Geo Inf. 2020, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Mao, F.; Ji, M.; Liu, T. Mining spatiotemporal patterns of urban dwellers from taxi trajectory data. Front. Earth Sci. 2016, 10, 205–221. [Google Scholar] [CrossRef]
- Zhi, Y.; Li, H.; Wang, D.; Deng, M.; Wang, S.; Gao, J.; Duan, Z.; Liu, Y. Latent spatio-temporal activity structures: A new approach to inferring intra-urban functional regions via social media check-in data. Geo Spat. Inf. Sci. 2016, 19, 94–105. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Chi, G.; Shi, L. Social sensing: A new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Yuan, N.J.; Zheng, Y.; Xie, X.; Wang, Y.; Zheng, K.; Xiong, H. Discovering urban functional zones using latent activity trajectories. IEEE Trans. Knowl. Data Eng. 2014, 27, 712–725. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, R.; Yang, J.; Li, Y.; Jiang, H.; Liao, W.; Sun, M. Identify urban building functions with multisource data: A case study in Guangzhou, China. Int. J. Geogr. Inf. Sci. 2022, 36, 1–26. [Google Scholar] [CrossRef]
- Yang, Z.; Shu, J.; Yang, H.; Zhao, Y. Exploring urban functional areas based on multi-source data: A case study of Beijing. Geogr. Res. 2021, 40, 477–494. [Google Scholar] [CrossRef]
- Du, S.; Du, S.; Liu, B.; Zhang, X.; Zheng, Z. Large-scale urban functional zone mapping by integrating remote sensing images and open social data. GISci. Remote Sens. 2020, 57, 411–430. [Google Scholar] [CrossRef]
- Yu, B.; Wang, Z.; Mu, H.; Sun, L.; Hu, F. Identification of Urban Functional Regions Based on Floating Car Track Data and POI Data. Sustainability 2019, 11, 6541. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yang, F. A study of urban functional area identification methods based on big data of social sensing. Urban. Archit. 2017, 27, 30–34. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Tu, W.; Mai, K.; Yao, Y.; Chen, Y. Functional urban land use recognition integrating multi-source geospatial data and cross-correlations. Comput. Environ. Urban Syst. 2019, 78, 101374. [Google Scholar] [CrossRef]
- Su, Y.; Zhong, Y.; Zhu, Q.; Zhao, J. Urban scene understanding based on semantic and socioeconomic features: From high-resolution remote sensing imagery to multi-source geographic datasets. ISPRS J. Photogramm. Remote Sens. 2021, 179, 50–65. [Google Scholar] [CrossRef]
- Yao, Y.; Li, X.; Liu, X.; Liu, P.; Liang, Z.; Zhang, J.; Mai, K. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model. Int. J. Geogr. Inf. Sci. 2017, 31, 825–848. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H.; Yang, H. Urban Functional Zone Recognition Integrating Multisource Geographic Data. Remote Sens. 2021, 13, 4732. [Google Scholar] [CrossRef]
- Liu, X.; He, J.; Yao, Y.; Zhang, J.; Liang, H.; Wang, H.; Hong, Y. Classifying urban land use by integrating remote sensing and social media data. Int. J. Geogr. Inf. Sci. 2017, 31, 1675–1696. [Google Scholar] [CrossRef]
- Bao, H.; Ming, D.; Guo, Y.; Zhang, K.; Zhou, K.; Du, S. DFCNN-Based Semantic Recognition of Urban Functional Zones by Integrating Remote Sensing Data and POI Data. Remote Sens. 2020, 12, 1088. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Du, S.; Wang, Q. Integrating bottom-up classification and top-down feedback for improving urban land-cover and functional-zone mapping. Remote Sens. Environ. 2018, 212, 231–248. [Google Scholar] [CrossRef]
- Gu, Y.; Jiao, L.; Dong, T.; Wang, Y.; Xu, G. Spatial Distribution and Interaction Analysis of Urban Functional Areas Based on Multi-source Data. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 1113–1121. [Google Scholar] [CrossRef]
- Wang, J.; Ye, Y.; Fang, F. A study of urban functional zoning based on kernel density estimation and fusion data. Geogr. Geo Inf. Sci. 2019, 35, 66–71. [Google Scholar] [CrossRef]
- Liu, X.; Niu, N.; Liu, X.; Jin, H.; Ou, J.; Jiao, L.; Liu, Y. Characterizing mixed-use buildings based on multi-source big data. Int. J. Geogr. Inf. Sci. 2018, 32, 738–756. [Google Scholar] [CrossRef]
- Xing, H.; Meng, Y. Integrating landscape metrics and socioeconomic features for urban functional region classification. Comput. Environ. Urban Syst. 2018, 72, 134–145. [Google Scholar] [CrossRef]
- Feng, Y.; Huang, Z.; Wang, Y.; Wan, L.; Liu, Y.; Zhang, Y.; Shan, X. An SOE-Based Learning Framework Using Multisource Big Data for Identifying Urban Functional Zones. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7336–7348. [Google Scholar] [CrossRef]
- Wang, Q.; Dai, Z.Y. The analysis of urban spatial structure based on POI data and principal component analysis. Territ. Nat. Resour. Study 2018, 6, 12–16. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, Y.; Xia, Z.; Chi, J.; Jiao, L.; Wei, Z. Identification and Classification of Wuhan Urban Districts Based on POI. J. Geomat. 2018, 43, 81–85. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Q.; Li, B. Extracting hierarchical landmarks from urban POI data. Natl. Remote Sens. Bull. 2011, 15, 973–988. [Google Scholar] [CrossRef]
- Jia, F.; Yan, J.; Wang, T. Research on scoring evaluation model and functional regions identification constructed by big data. Sci. Surv. Mapp. 2021, 46, 172–178. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, S.; Yu, D.; Zhu, H.; Li, H. Analysis of resident trip characteristics based on taxi trajectory. Geospat. Inf. 2019, 17, 128–130. [Google Scholar] [CrossRef]
- Luo, S.; Liu, Y.; Gao, S.; Wang, P. Quantitative identification of urban functional areas based on spatial grid. Bull. Surv. Mapp. 2020, S1, 214–217. [Google Scholar] [CrossRef]
- Jia, Y.; Ge, Y.; Ling, F.; Guo, X.; Wang, J.; Wang, L.; Chen, Y.; Li, X. Urban land use mapping by combining remote sensing imagery and mobile phone positioning data. Remote Sens. 2018, 10, 446. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Xu, Y.; Tang, J.; Deng, M.; Huang, J.; Yang, W.; Wu, F. Recognizing urban functional zones by a hierarchical fusion method considering landscape features and human activities. Trans. GIS 2020, 24, 1359–1381. [Google Scholar] [CrossRef]
- Dharani, M.; Sreenivasulu, G. Land use and land cover change detection by using principal component analysis and morphological operations in remote sensing applications. Int. J. Comput. Appl. 2021, 43, 462–471. [Google Scholar] [CrossRef]
- Eklundh, L.; Singh, A. A comparative analysis of standardised and unstandardised principal components analysis in remote sensing. Int. J. Remote Sens. 1993, 14, 1359–1370. [Google Scholar] [CrossRef]
- Hou, Q.; Wang, F.; Li, Y. Extraction of color image texture feature based on gray-level co-occurrence matrix. Remote Sens. Land Resour. 2013, 25, 26–32. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Deng, Y.; Li, M.; Sun, M.; Yang, J.; Xu, J. Extraction and Analysis of Finer Impervious Surface Classes in Urban Area. Remote Sens. 2021, 13, 459. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Chi, T.; Peng, L.; Liu, J.; Yang, L. Classification of GF-1 remote sensing image based on random forests for urban land-use. Bull. Surv. Mapp. 2016, 5, 73. [Google Scholar] [CrossRef]
- Sanlang, S.; Cao, S.; Du, M.; Mo, Y.; Chen, Q.; He, W. Integrating aerial LiDAR and very-high-resolution images for urban functional zone mapping. Remote Sens. 2021, 13, 2573. [Google Scholar] [CrossRef]
- Zhang, X.; Du, S.; Wang, Q.; Zhou, W. Multiscale Geoscene Segmentation for Extracting Urban Functional Zones from VHR Satellite Images. Remote Sens. 2018, 10, 281. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Zhan, Q.; Yang, C.; Liu, H. The Diversified Impacts of Urban Morphology on Land Surface Temperature among Urban Functional Zones. Int. J. Environ. Res. Public Health 2020, 17, 9578. [Google Scholar] [CrossRef]
- Yu, W.; Ai, Y.; Yang, M.; Liu, J. Detecting “Hot Spots” of facility POIs based on kernel density estimation and spatial autocorrelation technique. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 221–227. [Google Scholar] [CrossRef]
- Hu, Q.; Bai, G.; Wang, S.; Ai, M. Extraction and monitoring approach of dynamic urban commercial area using check-in data from Weibo. Sustain. Cities Soc. 2019, 45, 508–521. [Google Scholar] [CrossRef]
- Lai, G.; Shang, Y.; He, B.; Zhao, G.; Yang, M. Revealing Taxi Interaction Network of Urban Functional Area Units in Shenzhen, China. ISPRS Int. J. Geo Inf. 2022, 11, 377. [Google Scholar] [CrossRef]
- Wei, S.; Wang, L. Community detection, road importance assessment, and urban function pattern recognition: A big data approach. J. Spat. Sci. 2021, 22, 1–21. [Google Scholar] [CrossRef]
- Hao, W.; Tong, D.; Liu, Q.; Feng, C. The delimitation and classified planning and management of transformation function region: The experience and exploration of urban renewal in Shenzhen. Urban Dev. Stud. 2015, 42–48. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, Y.; Cui, C. Identifying Commuting Pattern of Beijing Using Bus Smart Card Data. Acta Geogr. Sin. 2012, 67, 1339–1352. [Google Scholar] [CrossRef]
- Hu, Y.; Han, Y. Identification of Urban Functional Areas Based on POI Data: A Case Study of the Guangzhou Economic and Technological Development Zone. Sustainability 2019, 11, 1385. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Xu, H.; Wang, C. Research on urban functional area recognition integrating OSM road network and POI data. Geogr. Geo Inf. Sci. 2020, 36, 57–63. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Xie, Y.; Ye, M. Urban Planning Based on Multi-source Spatiotemporal Big Data: A Case Study of Xiacheng District of Hangzhou City. Geomat. World 2020, 27, 25–30. [Google Scholar] [CrossRef]
- Song, J.; Tong, X.; Wang, L.; Zhao, C.; Prishchepov, A.V. Monitoring finer-scale population density in urban functional zones: A remote sensing data fusion approach. Landsc. Urban Plan. 2019, 190, 103580. [Google Scholar] [CrossRef]
- Yu, Z.; Jing, Y.; Yang, G.; Sun, R. A new urban functional zone-based climate zoning system for urban temperature study. Remote Sens. 2021, 13, 251. [Google Scholar] [CrossRef]
Data Type | Function | Sources |
---|---|---|
Building footprint | Extract the building features of the block | Gaode map (https://lbs.amap.com/api accessed on 11 October 2021) |
POI | Extract the social and economic characteristics of the block | Gaode map (https://lbs.amap.com/api accessed on 25 May 2021) |
Road network | The basic data of blocks | OpenStreetMap (http://www.openstreepmap.org accessed on 26 April 2021) |
Landsat 8 OLI image | Extract the physical characteristics of the block | Geospatial Data Cloud (http://www.gscloud.cn/sources accessed on 11 November 2021) |
Street View | Assistance for sample collection and verification | Baidu Street View (https://map.baidu.com/ accessed on 10 August 2022) |
Google Earth | Assistance for sample collection and verification | Google Earth (https://earth.google.com/web/ accessed on 10 August 2022) |
Road Buffer Level | Class in OSM |
---|---|
First buffer (20 m) | motorway, motorway_link, tertiary, tertiary_link, track, trunk, trunk_link |
Second buffer (10 m) | secondary, secondary_link |
Third buffer (5 m) | living_street, path, primary, primary_link, residential, service, unclassified, unknown |
Area (m²) | POI Class | Score (Points) |
---|---|---|
<500 | C2, C3, C6, C8, C9 | 3 |
500–1000 | C1, C4, C5, C7, I1, P2, P4 | 8 |
1000–5000 | C10, I2, P1, P3, R1 | 40 |
5000–10,000 | G1, G2 | 80 |
≥10,000 | I3 | 100 |
Contrast Block | Google Map Image | Classification Result | Baidu Map Street View |
---|---|---|---|
A mixed-function area of green space and residential | |||
A mixed-function area of public service and commercial | |||
A mixed-function area of industrial and green space | |||
A mixed-function area of public service and residential | |||
A mixed-function area of public service and green space | |||
A mixed-function area of industrial and commercial | |||
Legend |
Input Feature Factors | Residential Area | Commercial Area | Industrial Area | Public Service Area | Green Space Area | Overall Accuracy |
---|---|---|---|---|---|---|
P | 70% | 30% | 20% | 50% | 60% | 46% |
B | 70% | 40% | 50% | 0% | 90% | 50% |
B2 | 40% | 30% | 20% | 10% | 90% | 38% |
I | 50% | 60% | 90% | 50% | 90% | 64% |
I2 | 50% | 60% | 70% | 20% | 90% | 50% |
P + B | 60% | 40% | 70% | 20% | 70% | 52% |
P + I | 80% | 70% | 80% | 50% | 90% | 74% |
B + I | 60% | 70% | 80% | 60% | 100% | 74% |
P + B2 + I2 | 60% | 70% | 90% | 50% | 100% | 74% |
P + B + I | 100% | 70% | 90% | 60% | 100% | 82% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Deng, Y.; Li, X.; Li, M.; Jing, W.; Yang, J.; Chen, Z.; Liu, T. Sub-Block Urban Function Recognition with the Integration of Multi-Source Data. Sensors 2022, 22, 7862. https://doi.org/10.3390/s22207862
Liu B, Deng Y, Li X, Li M, Jing W, Yang J, Chen Z, Liu T. Sub-Block Urban Function Recognition with the Integration of Multi-Source Data. Sensors. 2022; 22(20):7862. https://doi.org/10.3390/s22207862
Chicago/Turabian StyleLiu, Baihua, Yingbin Deng, Xin Li, Miao Li, Wenlong Jing, Ji Yang, Zhehua Chen, and Tao Liu. 2022. "Sub-Block Urban Function Recognition with the Integration of Multi-Source Data" Sensors 22, no. 20: 7862. https://doi.org/10.3390/s22207862