Suppression of Modulation Instability Induced Phase Noise in the Long-Haul Phase-Sensitive Optical Time Domain Reflectometry
Abstract
:1. Introduction
2. Modulation Instability in Optical Fibers
3. The Modulation Instability-Induced Phase Noise in Long-Haul Φ-OTDR
4. Suppression of MI-Induced Phase Noise in the Long-Haul Φ-OTDR Systems
4.1. The Principle of the Coherent Seed Injection Method
4.2. Phase Noise Suppression with the Coherent Seed Injection Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, S.; Yu, F.; Hong, R.; Xu, W.; Shao, L.; Wang, F. Advances in phase-sensitive optical time-domain reflectometry. Opto-Electron. Adv. 2022, 5, 200078. [Google Scholar] [CrossRef]
- Stark, D.J.; Maida, J.L.; Skinner, N.G. Adapting optical technology to dynamic energy prices: Fiber-optic sensing in the contemporary oil field. In Proceedings of the Fiber Optic Sensors and Applications XIV, Anaheim, CA, USA, 27 April 2017. [Google Scholar] [CrossRef]
- Mondanos, M.; Parker, T.; Milne, C.H.; Yeo, J.; Coleman, T.; Farhadiroushan, M. Distributed temperature and distributed acoustic sensing for remote and harsh environments. In Proceedings of the Sensors for Extreme Harsh Environments II, Baltimore, MD, USA, 20–24 April 2015. [Google Scholar] [CrossRef]
- Peng, F.; Duan, N.; Rao, Y.; Li, J. Real-time position and speed monitoring of trains using phase-sensitive OTDR. IEEE Photon. Technol. Lett. 2014, 26, 2055–2057. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.R.; Martins, H.F.; Williams, E.F.; Becerril, C.; Magalhães, R.; Costa, L.; Martin-Lopez, S.; Jia, Z.; Zhan, Z.; González-Herráez, M. Seismic Monitoring with Distributed Acoustic Sensing from the Near-surface to the Deep Oceans. J. Lightwave Technol. 2022, 40, 1453–1463. [Google Scholar] [CrossRef]
- Nishimura, T.; Emoto, K.; Nakahara, H.; Miura, S.; Yamamoto, M.; Sugimura, S.; Ishikawa, A.; Kimura, T. Source location of volcanic earthquakes and subsurface characterization using fiber-optic cable and distributed acoustic sensing system. Sci. Rep. 2021, 11, 6319. [Google Scholar] [CrossRef] [PubMed]
- Eliasson, H.; Vijayan, K.; Foo, B.; Olsson, S.L.I.; Astra, E.; Karlsson, M.; Andrekson, P.A. Phase-sensitive amplifier link with distributed Raman amplification. Opt. Express 2018, 26, 19854–19863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, F.; Wang, Z.; Rao, Y.; Jia, X. 106 km fully-distributed fiber-optic fence based on P-OTDR with 2nd-order Raman amplification. In Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, Anaheim, CA, USA, 17–21 March 2013. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, J.; Li, J.; Fan, M.; Wu, H.; Peng, F.; Zhang, L.; Zhou, Y.; Rao, Y. Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Opt. Lett. 2014, 39, 5866–5869. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, J.; Fan, M.; Zhang, L.; Peng, L.; Wu, H.; Zheng, J.; Zhou, Y.; Rao, Y. Phase-sensitive optical time-domain reflectometry with Brillouin amplification. Opt. Lett. 2014, 39, 4313–4316. [Google Scholar] [CrossRef] [PubMed]
- Putten, L.D.; Masoudi, A.; Brambilla, G. 100-km-sensing-range single-ended distributed vibration sensor based on remotely pumped Erbium-doped fiber amplifier. Opt. Lett. 2019, 44, 5925–5928. [Google Scholar] [CrossRef] [PubMed]
- Martins, H.F.; Martin-Lopez, S.; Corredera, P.; Salgado, P.; Frazão, O.; González-Herráez, M. Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry. Opt. Lett. 2013, 38, 872–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto, M.A.; Alem, M.; Chen, W.; Thévenaz, L. Mitigating modulation instability in Brillouin distributed fibre sensors. In Proceedings of the Fifth European Workshop on Optical Fibre Sensors, Krakow, Poland, 20 May 2013. [Google Scholar] [CrossRef] [Green Version]
- Soto, M.A.; Ricchiuti, A.L.; Zhang, L.; Barrera, D.; Sales, S.; Thévenaz, L. Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers. Opt. Express 2014, 22, 28584–28595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urricelqui, J.; Alem, M.; Sagues, M.; Thévenaz, L.; Loayssa, A.; Soto, M.A. Mitigation of modulation instability in Brillouin distributed fiber sensors by using orthogonal polarization pulses. In Proceedings of the 24th International Conference on Optical Fibre Sensors, Curitiba, Brazil, 28 September 2015. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Ruiz, M.R.; Martins, H.F.; Pastor-Graells, J.; Martin-Lopez, S.; Gonzalez-Herraez, M. Phase-sensitive OTDR probe pulse shapes robust against modulation-instability fading. Opt. Lett. 2016, 41, 5756–5759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, C.; Li, H.; Yan, B.; Sun, Y.; Liu, H.; Ai, K.; Yan, Z.; Sun, Q. Modulation Instability Suppression for Fiber Optic DAS Assisted with Dual Wavelength Lasers. In Proceedings of the CLEO: Science and Innovations 2022, San Jose, CA, USA, 15–20 May 2022. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics. In Nonlinear Science at the Dawn of the 21st Century; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2000; pp. 195–211. [Google Scholar] [CrossRef]
- Hu, X.; Chen, W.; Lu, Y.; Chen, M.; Meng, Z. Suppression of spontaneous modulation instability and phase noise with a coherent seed in the interferometric fiber sensing systems. Opt. Lett. 2018, 43, 3642–3645. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, W.; Lu, Y.; Yu, Z.; Chen, M.; Meng, Z. Distributed Measurement of Fermi-Pasta-Ulam Recurrence in Optical Fibers. IEEE Photon. Technol. Lett. 2018, 30, 47–50. [Google Scholar] [CrossRef]
- Vanderhaegen, G.; Szriftgiser, P.; Kudlinski, A.; Conforti, M.; Armaroli, A.; Mussot, A. Observation of the noise-driven thermalization of the Fermi-Pasta-Ulam-Tsingou recurrence in optical fibers. arXiv 2022. [CrossRef]
- Mussot, A.; Naveau, C.; Conforti, M.; Kudlinski, A.; Copie, F.; Szriftgiser, P.; Trillo, S. Fibre multi-wave mixing combs reveal the broken symmetry of Fermi–Pasta–Ulam recurrence. Nat. Photon. 2018, 12, 303–308. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, X.; Yu, Z.; Zhu, Q.; Meng, Z. Fading noise reduction in distributed acoustic sensing using an optimal weighted average algorithm. Appl. Opt. 2021, 60, 10643–10648. [Google Scholar] [CrossRef]
Input Power (mW) | Noise without PM (dB) | Noise with PM (dB) | Suppression Effect (dB) |
---|---|---|---|
347 | −50.8 | −50.5 | +0.3 |
500 | −44.2 | −52.3 | −8.1 |
745 | −39.9 | −50.7 | −10.8 |
1240 | −34.9 | −50.4 | −15.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhu, Q.; Lu, Y.; Meng, Z.; Hu, X. Suppression of Modulation Instability Induced Phase Noise in the Long-Haul Phase-Sensitive Optical Time Domain Reflectometry. Sensors 2022, 22, 8190. https://doi.org/10.3390/s22218190
Zhang Y, Zhu Q, Lu Y, Meng Z, Hu X. Suppression of Modulation Instability Induced Phase Noise in the Long-Haul Phase-Sensitive Optical Time Domain Reflectometry. Sensors. 2022; 22(21):8190. https://doi.org/10.3390/s22218190
Chicago/Turabian StyleZhang, Yichi, Qi Zhu, Yang Lu, Zhou Meng, and Xiaoyang Hu. 2022. "Suppression of Modulation Instability Induced Phase Noise in the Long-Haul Phase-Sensitive Optical Time Domain Reflectometry" Sensors 22, no. 21: 8190. https://doi.org/10.3390/s22218190