WS2 Nanorod as a Remarkable Acetone Sensor for Monitoring Work/Public Places
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Materials Characterizations
2.3. WS2 NRs-Based Sensor Fabrication and Measurements
3. Results and Discussion
3.1. Morphological, Structural, and Elemental Study
3.2. Acetone-Sensing Characteristics
3.3. Oxygen Active Site Formation and Acetone Molecule Detection Mechanism
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, Q.; Lyu, P.; Handschuh-Wang, S.; Teng, L.; Zheng, B. Facile synthesis of hierarchical Co3O4/MWCNT composites with enhanced acetone sensing property. Ceram. Int. 2022, 48, 28419–28427. [Google Scholar] [CrossRef]
- Zhou, X.; Xue, Z.; Chen, X.; Huang, C.; Bai, W.; Lu, Z.; Wang, T. Nanomaterial-based gas sensors used for breath diagnosis. J. Mater. Chem. B 2020, 8, 3231–3248. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Fan, J.; Liu, F.; Zhang, Y.; Jiang, L.; Ouyang, S.; Zhang, C.; Wang, C.; Sun, P.; Wang, L.; et al. YSZ-based mixed potential type acetone gas sensor attached with CuSb2O6 sensing electrode for ketosis diagnosis. Sens. Actuators B 2022, 370, 132408. [Google Scholar] [CrossRef]
- Costello, B.d.L.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014, 8, 014001. [Google Scholar] [CrossRef] [PubMed]
- Tai, H.; Wang, S.; Duan, Z.; Jiang, Y. Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sens. Actuators B 2020, 318, 128104. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Y.; Du, H.; Sun, Y.; Sun, S.; Xu, S.; Cong, L.; Sun, P. Acetone sensing mechanism of Ar/O2 plasma modified indium oxide electrospun fibers: A combined DFT and experimental study. J. Alloys Compd. 2022, 895, 162017. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, Z.; Xiong, X.; Hu, X.; Wang, X.; Li, N.; Jin, T.; Chen, Y. ZnO/ZnSe heterojunction nanocomposites with oxygen vacancies for acetone sensing. J. Alloys Compd. 2022, 906, 164316. [Google Scholar] [CrossRef]
- Oh, S.; Park, J.-S.; Lee, H.-J.; Jeong, H.M. Selective acetone gas sensing of Cu2(OH)3F/CuO enhanced by hydroxy bonds and fluorine substitution. Sens. Actuators B 2022, 372, 132662. [Google Scholar] [CrossRef]
- Atanasova, G.; Dilova, T.; Dikovska, A.O.; Nikov, R.G.; Nedyalkov, N.N. Acetone-sensing properties of ZnO-noble-metals composite nanostructures and their improvement by light irradiation. Thin Solid Films 2022, 750, 139198. [Google Scholar] [CrossRef]
- Sharma, T.S.K.; Hwa, K.Y. Facile Synthesis of Ag/AgVO3/N-rGO Hybrid Nanocomposites for electrochemical detection of levofloxacin for complex biological samples using screen-printed carbon paste electrodes. Inorg. Chem. 2021, 60, 6585–6599. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, F.; Prabhakar, A.; Qin, X.; Forzani, E.S.; Tao, N. Colorimetric sensor for online accurate detection of breath acetone. ACS Sens. 2021, 6, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Majhi, S.M.; Ali, A.; Greish, Y.E.; El-Maghraby, H.F.; Qamhieh, N.N.; Hajamohideen, A.R.; Mahmoud, S.T. Accordion-like-Ti3C2 MXene-based gas sensors with sub-ppm level detection of acetone at room temperature. ACS Appl. Electron. Mater. 2022, 4, 4094–4103. [Google Scholar] [CrossRef]
- Huang, G.; Liu, H.; Wang, S.; Yang, X.; Liu, B.; Chen, H.; Xu, M. Hierarchical architecture of WS2 nanosheets on graphene frameworks with enhanced electrochemical properties for lithium storage and hydrogen evolution. J. Mater. Chem. A 2015, 3, 24128–24138. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, M. Two-dimensional WS2/MoS2 heterostructures: Properties and applications. Nanoscale 2021, 13, 5594–5619. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Gai, X.; Zhao, F.; Wang, J. Excitation induced asymmetric fluorescence emission in 2D-WS2 quantum dots. Mater. Adv. 2022, 3, 1772–1779. [Google Scholar] [CrossRef]
- Luo, X.; Huang, J.; Huang, Y.; Cao, L.; Li, J.; Wang, Y.; Xu, Z.; Wei, S.; Kajiyoshi, K. Self-templated induced carbon-supported hollow WS2 composite structure for high-performance sodium storage. J. Mater. Chem. A 2021, 9, 21366–21378. [Google Scholar] [CrossRef]
- Villamayor, M.M.S.; Lindblad, A.; Johansson, F.O.L.; Tran, T.; Pham, N.H.; Primetzhofer, D.; Sorgenfrei, N.L.A.N.; Giangrisotomi, E.; Fohlisch, A.; Lourenço, P.; et al. Growth of two-dimensional WS2 thin films by reactive sputtering. Vacuum 2021, 188, 110205. [Google Scholar] [CrossRef]
- Das, R.; Bora, A.; Giri, P.K. Quantitative understanding of the ultra-sensitive and selective detection of dopamine using a graphene oxide/WS2 quantum dot hybrid. J. Mater. Chem. C 2020, 8, 7935–7946. [Google Scholar] [CrossRef]
- Jo, S.; Ubrig, N.; Berger, H.; Kuzmenko, A.B.; Morpurgo, A.F. Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 2014, 14, 2019–2025. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, A.; Pendurthi, R.; Choudhury, T.H.; Redwing, J.M.; Das, S. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 2021, 12, 693. [Google Scholar] [CrossRef]
- Rafiq, M.K.S.B.; Amin, N.; Alharbi, H.F.; Luqman, M.; Ayob, A.; Alharthi, Y.S.; Alharthi, N.H.; Bais, B.; Akhtaruzzaman, M. WS2: A new window layer material for solar cell application. Sci. Rep. 2020, 10, 771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, Y.; Chen, T.; Lu, Y.; Chang, R.-J.; Sinha, S.; Warner, J.H. High-performance WS2 monolayer light emitting tunneling devices using 2D materials grown by chemical vapor deposition. ACS Nano 2019, 13, 4530–4537. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Li, Y.; Sokolovskij, R.; Sacco, L.; Zheng, H.; Ye, H.; Yu, H.; Fan, X.; Tian, H.; Ren, T.-L.; et al. Ultra-high sensitive NO2 gas sensor based on tunable polarity transport in CVD-WS2/IGZO p-N heterojunction. ACS Appl. Mater. Interfaces 2019, 11, 40850–40859. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhao, Q.; Chen, A.P.; Zhao, J.; Zhou, Z.; Wang, J.; Wang, H.; Zhang, L.; Li, X.; Xiao, Z.; et al. Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small 2019, 15, 1901423. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.; Dai, H.; Zhang, H.; Liu, J.; Ma, S.; Chen, X. A peptide-WS2 nanosheet based biosensing platform for determination of β-secretase and screening of its inhibitors. Analyst 2018, 143, 4585–4591. [Google Scholar] [CrossRef]
- Liu, S.; Zeng, Y.; Zhang, M.; Xie, S.; Tong, Y.; Cheng, F.; Lu, X. Binder-free WS2 nanosheets with enhanced crystallinity as a stable negative electrode for flexible asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 21460–21466. [Google Scholar] [CrossRef]
- Yin, L.; Pham-Cong, D.; Jeon, I.; Kim, J.-P.; Cho, J.; Jeong, S.-Y.; Lee, H.W.; Cho, C.-R. Electrochemical performance of vertically grown WS2 layers on TiNb2O7 nanostructures for lithium-ion battery anodes. Chem. Eng. J. 2020, 382, 122800. [Google Scholar] [CrossRef]
- Wang, D.; Li, Q.; Han, C.; Xing, Z.; Yang, X. When NiO@Ni meets WS2 nanosheet array: A highly efficient and ultrastable electrocatalyst for overall water splitting. ACS Cent. Sci. 2018, 4, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Zhang, F.; Qiu, J.; Chen, X.; Zheng, K.; Guo, H.; Yu, J.; Bao, J. A novel Hf2CO2/WS2 van der Waals heterostructure as a potential candidate for overall water splitting photocatalyst. Mater. Sci. Semicond. Process. 2021, 133, 105947. [Google Scholar] [CrossRef]
- Piao, M.; Chu, J.; Wang, X.; Chi, Y.; Zhang, H.; Li, C.; Shi, H.; Joo, M.-K. Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application. Nanotechnology 2018, 29, 025705. [Google Scholar] [CrossRef]
- Yi, J.; She, X.; Song, Y.; Mao, M.; Xia, K.; Xu, Y.; Mo, Z.; Wu, J.; Xu, H.; Li, H. Solvothermal synthesis of metallic 1T-WS2: A supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution. Chem. Eng. J. 2018, 335, 282–289. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, W.; Yang, L.; Huang, J.; Zhang, J.; Xiang, B. Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition. RSC Adv. 2015, 5, 15795–15799. [Google Scholar] [CrossRef]
- Zhou, P.; Tanghe, I.; Schiettecatte, P.; van Thourhout, D.; Hens, Z.; Geiregat, P. Ultrafast carrier dynamics in colloidal WS2 nanosheets obtained through a hot injection synthesis. J. Chem. Phys. 2019, 151, 164701. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shao, K.; Yang, W.; Tang, W.; Zhou, J.; He, Q.; Wu, Y.; Zhang, C.; Li, X.; Yang, X.; et al. Synthesis of wafer-scale monolayer WS2 crystals toward the application in integrated electronic devices. ACS Appl. Mater. Interfaces 2019, 11, 19381–19387. [Google Scholar] [CrossRef] [PubMed]
- Ballif, C.; Regula, M.; Schmid, P.E.; Remskar, M.; Sanjines, R.; Levy, F. Preparation and characterization of highly oriented, photoconducting WS2 thin films. Appl. Phys. A 1996, 62, 543–546. [Google Scholar] [CrossRef]
- Kim, M.-J.; Jeon, S.-J.; Kang, T.W.; Ju, J.-M.; Yim, D.; Kim, H.-I.; Park, J.H.; Kim, J.-H. 2H-WS2 quantum dots produced by modulating the dimension and phase of 1t-nanosheets for antibody-free optical sensing of neurotransmitters. ACS Appl. Mater. Interfaces 2017, 9, 12316–12323. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Z.; Huang, B.; Zhang, H.; Huang, Z.; Liu, M.; Duan, X. Few-layer WS2-WSe2 lateral heterostructures: Influence of the gas precursor selenium/tungsten ratio on the number of layers. ACS Nano 2022, 16, 1198–1207. [Google Scholar] [CrossRef]
- Asres, G.A.; Dombovari, A.; Sipola, T.; Puskás, R.; Kukovecz, A.; Kónya, Z.; Popov, A.; Lin, J.-F.; Lorite, G.S.; Mohl, M.; et al. A novel WS2 nanowire-nanoflake hybrid material synthesized from WO3 nanowires in sulfur vapor. Sci. Rep. 2016, 6, 25610. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.L.; Tu, J.P.; Wu, H.M.; Yang, Y.Z. WS2 nanorods prepared by self-transformation process and their tribological properties as additive in base oil. Mater. Sci. Eng. A 2007, 454–455, 487–491. [Google Scholar] [CrossRef]
- Mohan, V.V.; Manuraj, M.; Anjana, P.M.; Rakhi, R.B. WS2 nanoflowers as efficient electrode materials for supercapacitors. Energy Technol. 2022, 10, 2100976. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, A.; Bankuru, S.; Chakraborty, J.; Puravankara, S. Large-scale surfactant-free synthesis of WS2 nanosheets: An investigation into the detailed reaction chemistry of colloidal precipitation and their application as an anode material for lithium-ion and sodium-ion batteries. New J. Chem. 2020, 44, 1594–1608. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Cheng, Z.; Yang, J.; Li, Y. A sensitive acetone sensor based on WS2/WO3 nanosheets with p-n heterojunctions. ACS Appl. Nano Mater. 2022, 5, 12592–12599. [Google Scholar] [CrossRef]
- Kim, J.-H.; Sakaguchi, I.; Hishita, S.; Ohsawa, T.; Suzuki, T.T.; Saito, N. Ru-implanted WS2 nanosheet gas sensors to enhance sensing performance towards CO gas in self-heating mode. Sens. Actuators B 2022, 370, 132454. [Google Scholar] [CrossRef]
- Ahmadvand, H.; Zad, A.I.; Mohammadpour, R.; Hosseini-Shokouh, S.H.; Asadian, E. Room temperature and high response ethanol sensor based on two dimensional hybrid nanostructures of WS2/GONRs. Sci. Rep. 2020, 10, 14799. [Google Scholar] [CrossRef] [PubMed]
- Guang, Q.; Huang, B.; Li, X. Au-decorated WS2 microflakes based sensors for selective ammonia detection at room temperature. Chemosensors 2022, 10, 9. [Google Scholar] [CrossRef]
- Asres, G.A.; Baldoví, J.J.; Dombovari, A.; Järvinen, T.; Lorite, G.S.; Mohl, M.; Shchukarev, A.; Paz, A.P.; Xian, L.; Mikkola, J.-P.; et al. Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Res. 2018, 11, 4215–4224. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Chaudhary, P.; Singh, A.; Verma, A.; Yadav, D.; Yadav, B.C. Development of MoO3-CdO nanoparticles-based sensing device for the detection of harmful acetone levels in our skin and body via nail paint remover. Sens. Actuators B 2022, 368, 132102. [Google Scholar] [CrossRef]
- Huang, F.; Jian, J.; Wu, R. Few-layer thick WS2 nanosheets produced by intercalation/exfoliation route. J. Mater. Sci. 2016, 51, 10160–10165. [Google Scholar] [CrossRef]
- Rout, C.S.; Joshi, P.D.; Kashid, R.V.; Joag, D.S.; More, M.A.; Simbeck, A.J.; Washington, M.; Nayak, S.K.; Late, D.J. Superior field emission properties of layered WS2-RGO nanocomposites. Sci. Rep. 2013, 3, 3282. [Google Scholar] [CrossRef] [Green Version]
- Su, P.-G.; Lin-Kuo, S. H2-gas sensing and discriminating actions of a single-yarn sensor based on a Pd/GO multilayered thin film using FFT. Anal. Methods 2020, 12, 3537–3544. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Yu, Q.; Dong, H.; Pan, C.; Wang, D.; Liu, J.; Chen, X. High-performance acetone sensor based on electrospun Tb-doped α-Fe2O3 nanotubes. Ceram. Int. 2022, 48, 26828–26835. [Google Scholar] [CrossRef]
- Guo, L.; Shen, Z.; Ma, C.; Ma, C.; Wang, J.; Yuan, T. Gas sensor based on MOFs-derived Au-loaded SnO2 nanosheets for enhanced acetone detection. J. Alloys Compd. 2022, 906, 164375. [Google Scholar] [CrossRef]
- Feng, G.; Che, Y.; Wang, S.; Wang, S.; Hu, J.; Xiao, J.; Song, C.; Jiang, L. Sensitivity enhancement of In2O3/ZrO2 composite based acetone gas sensor: A promising collaborative approach of ZrO2 as the heterojunction and dopant for in-situ grown octahedron-like particles. Sens. Actuators B 2022, 367, 132087. [Google Scholar] [CrossRef]
- Zhu, L.-Y.; Yuan, K.; Li, Z.-C.; Miao, X.-Y.; Wang, J.-C.; Sun, S.; Devi, A.; Lu, H.-L. Highly sensitive and stable MEMS acetone sensors based on well-designed α-Fe2O3/C mesoporous nanorods. J. Colloid Interface Sci. 2022, 622, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Dong, X.; Wu, G.; Sun, J.; Chen, N.; Wei, H.; Zhu, S.; Tian, Q.; Wang, X.; Jing, Q.; et al. Ultrasensitive acetone gas sensor can distinguish the diabetic state of people and its high performance analysis by first-principles calculation. Sens. Actuators B 2022, 351, 130863. [Google Scholar] [CrossRef]
- Zhang, H.-J.; Liu, L.-Z.; Zhang, X.-R.; Zhang, S.; Meng, F.-N. Microwave-assisted solvothermal synthesis of shape-controlled CoFe2O4 nanoparticles for acetone sensor. J. Alloys Compd. 2019, 788, 1103–1112. [Google Scholar] [CrossRef]
- Bhati, V.S.; Kumar, M.; Banerjee, R. Gas sensing performance of 2D nanomaterials/metal oxide nanocomposites: A review. J. Mater. Chem. C 2021, 9, 8776–8808. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Hung, C.-S. Design of hydrothermally derived Fe2O3 rods with enhanced dual functionality via sputtering decoration of a thin ZnO coverage layer. ACS Omega 2020, 5, 16272–16283. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, M.; Comini, E. One-dimensional nanostructured oxide chemoresistive sensors. Langmuir 2020, 36, 6326–6344. [Google Scholar] [CrossRef]
- Siemons, M.; Simon, U. Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method. Sens. Actuators B 2007, 126, 595–603. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.; Sun, H.; Sun, P.; Liang, X.; Liu, F.; Hu, X.; Lu, G. Nanosheet-assembled ZnFe2O4 hollow microspheres for high-sensitive acetone sensor. ACS Appl. Mater. Interfaces 2015, 7, 15414–15421. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.; Sinha, R.; Nemade, H.B.; Mandal, T.K. Synthesis of MoS2-CuO nanocomposite for room temperature acetone sensing application. J. Alloys Compd. 2022, 910, 164891. [Google Scholar] [CrossRef]
- Park, S.; Sun, G.-J.; Kim, S.; Lee, S.; Lee, C. UV-enhanced acetone gas sensing of Co3O4-decorated ZnS nanorod gas sensors. Electron. Mater. Lett. 2015, 11, 572–579. [Google Scholar] [CrossRef]
- Afsar, M.F.; Rafiq, M.A.; Tok, A.I.Y. Two-dimensional SnS nanoflakes: Synthesis and application to acetone and alcohol sensors. RSC Adv. 2017, 7, 21556–21566. [Google Scholar] [CrossRef] [Green Version]
- Giberti, A.; Gaiardo, A.; Fabbri, B.; Gherardi, S.; Guidi, V.; Malagù, C.; Bellutti, P.; Zonta, G.; Casotti, D.; Cruciani, G. Tin(IV) sulfide nanorods as a new gas sensing material. Sens. Actuators B 2016, 223, 827–833. [Google Scholar] [CrossRef]
- Mishra, R.K.; Choi, G.J.; Mishra, Y.K.; Kaushik, A.; Sohn, Y.; Lee, S.H.; Gwag, J.S. A highly stable, selective, and high-performance VOC sensor using a SnS2 nano-lotus structure. J. Mater. Chem. C 2021, 9, 7713–7725. [Google Scholar] [CrossRef]
- Tang, H.; Sacco, L.N.; Vollebregt, S.; Ye, H.; Fan, X.; Zhang, G. Recent advances in 2D/nanostructured metal sulfide-based gas sensors: Mechanisms, applications, and perspectives. J. Mater. Chem. A 2020, 8, 24943–24976. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Wu, Z.; Wang, M.; Luo, J.; Torun, H.; Hu, P.; Yang, C.; Grundmann, M.; Liu, X.; et al. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 2019, 6, 470–506. [Google Scholar] [CrossRef] [Green Version]
- Baharuddin, A.A.; Ang, B.C.; Haseeb, A.S.M.A.; Wong, Y.C.; Wong, Y.H. Advances in chemiresistive sensors for acetone gas detection. Mater. Sci. Semicond. Process. 2019, 103, 104616. [Google Scholar] [CrossRef]
- Kim, D.H.; Shim, Y.-S.; Jeon, J.-M.; Jeong, H.Y.; Park, S.S.; Kim, Y.-W.; Kim, J.-S.; Lee, J.-H.; Jang, H.W. Vertically ordered hematite nanotube array as an ultrasensitive and rapid response acetone sensor. ACS Appl. Mater. Interfaces 2014, 6, 14779–14784. [Google Scholar] [CrossRef]
- Yuan, K.; Wang, C.-Y.; Zhu, L.-Y.; Cao, Q.; Yang, J.-H.; Li, X.-X.; Huang, W.; Wang, Y.-Y.; Lu, H.-L.; Zhang, D.W. Fabrication of a micro-electromechanical system-based acetone gas sensor using CeO2 nanodot-decorated WO3 nanowires. ACS Appl. Mater. Interfaces 2020, 12, 14095–14104. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, H.; Yang, S.; Wei, L.; Han, Z.; Zhang, Y.; Pan, H. Preadsorption of O2 on the exposed (001) facets of ZnO nanostructures for enhanced sensing of gaseous acetone. ACS Appl. Nano Mater. 2019, 2, 6144–6151. [Google Scholar] [CrossRef]
- Sen, S.; Maity, S.; Kundu, S. Fabrication of Fe doped reduced graphene oxide (rGO) decorated WO3 based low temperature ppm level acetone sensor: Unveiling sensing mechanism by impedance spectroscopy. Sens. Actuators B 2022, 361, 131706. [Google Scholar] [CrossRef]
- Cai, Z.; Park, S. Highly selective acetone sensor based on Co3O4-decorated porous TiO2 nanofibers. J. Alloys Compd. 2022, 919, 165875. [Google Scholar] [CrossRef]
- Jin, R.; Jiang, Y.; Zhao, L.; Wang, T.; Liu, X.; Liu, F.; Yan, X.; Sun, P.; Lu, G. High sensitivity and low detection limit of acetone sensor based on Ru-doped Co3O4 flower-like hollow microspheres. Sens. Actuators B 2022, 363, 131839. [Google Scholar] [CrossRef]
- Jin, S.; Wu, D.; Song, W.; Hao, H.; Gao, W.; Yan, S. Superior acetone sensor based on hetero-interface of SnSe2/SnO2 quasi core shell nanoparticles for previewing diabetes. J. Colloid Interface Sci. 2022, 621, 119–130. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, R.K.; Kumar, V.; Trung, L.G.; Choi, G.J.; Ryu, J.W.; Mane, S.M.; Shin, J.C.; Kumar, P.; Lee, S.H.; Gwag, J.S. WS2 Nanorod as a Remarkable Acetone Sensor for Monitoring Work/Public Places. Sensors 2022, 22, 8609. https://doi.org/10.3390/s22228609
Mishra RK, Kumar V, Trung LG, Choi GJ, Ryu JW, Mane SM, Shin JC, Kumar P, Lee SH, Gwag JS. WS2 Nanorod as a Remarkable Acetone Sensor for Monitoring Work/Public Places. Sensors. 2022; 22(22):8609. https://doi.org/10.3390/s22228609
Chicago/Turabian StyleMishra, Rajneesh Kumar, Vipin Kumar, Le Gia Trung, Gyu Jin Choi, Jeong Won Ryu, Sagar M. Mane, Jae Cheol Shin, Pushpendra Kumar, Seung Hee Lee, and Jin Seog Gwag. 2022. "WS2 Nanorod as a Remarkable Acetone Sensor for Monitoring Work/Public Places" Sensors 22, no. 22: 8609. https://doi.org/10.3390/s22228609