Automatic Classification Service System for Citrus Pest Recognition Based on Deep Learning
Abstract
:1. Introduction
- We have developed a novel citrus pest dataset comprising six disease detection classes. The constructed dataset consists citrus images that are either infected or non-infected by pests in Jeju Island, South Korea, in 2021. The constructed dataset provides a total of 20,000 high-quality images with a resolution of 1920 × 1090. Currently, Citrus Open Datasets are either low resolution or paid. We published the datasets used in the study free of charge https://github.com/LeeSaeBom/citrus (accessed on 19 August 2022). A detailed description of the dataset is provided in Section 5.
- We use EfficientNet and ViT models, which are the latest algorithms in this area, including VGGNet, ResNet, and DenseNet models, which are commonly used for the classification and detection of plant pests and diseases [21,22,23]. All five models can use the pre-training method, and high accuracy and f1 score derivation are possible. VGGNet, ResNet, DenseNet and EfficientNet models can extract local features of the feature map using a convolution layer, and the ViT model uses a transformer, so global features of the feature map can be extracted.
- Application development is required to automate the classification of various diseases. The web application server has the advantage that it can be accessed from anywhere in the world, as long as the Internet is available. In most citrus cultivation sites, workers manually determine the presence or absence of pests and classify disease types. It is difficult for non-professional workers to quickly determine the type of pest. Based on these problems, we developed our own web application system, and non-professional workers can use it to easily determine the pests and diseases.
2. Related Works
2.1. A Study on the Detection of Fruit Crop Disease
2.2. A Study on Fruit Crop Disease Based on Machine Learning
2.3. A Study on Fruit Crop Diseases Based on Deep Learning
3. Network Architecture
4. Methods
4.1. VGGNet
4.2. ResNet
4.3. DenseNet
4.4. EfficientNet
4.5. ViT
4.6. Comparison of Five Models
5. Experiments
5.1. Citrus Disease Images and Datasets
5.2. Data Transform
5.3. Transfer Learning
5.4. Model Training
5.5. Evaluation Metrics
5.6. Results in Validation Dataset
5.7. Results in Test Dataset
5.8. Web Application Module
6. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Moore, D.; Robson, G.D.; Trinci, A.P.J. 21st Century Guidebook to Fungi; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Dutt, M.; El-Mohtar, C.A.; Wang, N. Biotechnological approaches for the resistance to citrus diseases. In The Citrus Genome; Springer: Cham, Switzerland, 2020; pp. 245–257. [Google Scholar]
- Guimarães, R.; Barros, L.; Barreira, J.C.; Sousa, M.J.; Carvalho, A.M.; Ferreira, I.C. Targeting excessive free radicals with peels and juices of citrus fruits: Grapefruit, lemon, lime and orange. Food Chem. Toxicol. 2010, 48, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Khanchouch, K.; Pane, A.; Chriki, A.; Cacciola, S.O. Major and emerging fungal diseases of citrus in the Mediterranean Region. Citrus Pathol. 2017, 1, 66943. [Google Scholar]
- Gottwald, T.R.; Irey, M. Post-hurricane analysis of citrus canker II: Predictive model estimation of disease spread and area potentially impacted by various eradication protocols following catastrophic weather events. Plant Health Prog. 2007, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Caserta, R.; Teixeira-Silva, N.S.; Granato, L.M.; Dorta, S.O.; Rodrigues, C.M.; Mitre, Y.J.T.H.; Fischer, E.R.; Nascimento, C.A.; Souza-Neto, R.R.; Takita, M.A.; et al. A Citrus biotechnology: What has been done to improve disease resistance in such an important crop? Biotechnol. Res. Innov. 2019, 3, 95–109. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Ke, F.; Nie, Z.; Wang, P.; Xu, J. Citrus genetic engineering for disease resistance: Past, present and future. Int. J. Mol. Sci. 2019, 20, 5256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeel, A.; Khan, M.A.; Sharif, M.; Azam, F.; Shah, J.H.; Umer, T.; Wan, S. Diagnosis and recognition of grape leaf diseases: An automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusion. Sustain. Comput. Inf. Syst. 2019, 24, 100349. [Google Scholar] [CrossRef]
- Khan, M.A.; Akram, T.; Sharif, M.; Javed, K.; Raza, M.; Saba, T. An automated system for cucumber leaf diseased spot detection and classification using improved saliency method and deep features selection. Multimed. Tools Appl. 2020, 79, 18627–18656. [Google Scholar] [CrossRef]
- Aurangzeb, K.; Akmal, F.; Khan, M.A.; Sharif, M.; Javed, M.Y. Advanced machine learning algorithm based system for crops leaf diseases recognition. In Proceedings of the IEEE 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), Riyadh, Saudi Arabia, 4–5 March 2020; pp. 146–151. [Google Scholar]
- Verma, B.; Zhang, L.; Stockwell, D. Roadside Video Data Analysis: Deep learning; Springer: Singapore, 2017. [Google Scholar]
- Dhiman, P.; Kukreja, V.; Manoharan, P.; Kaur, A.; Kamruzzaman, M.M.; Dhaou, I.B.; Iwendi, C. A Novel Deep Learning Model for Detection of Severity Level of the Disease in Citrus Fruits. Electronics 2022, 11, 495. [Google Scholar] [CrossRef]
- Chen, Y.; An, X.; Gao, S.; Li, S.; Kang, H. A deep learning-based vision system combining detection and tracking for fast on-line citrus sorting. Front. Plant Sci. 2021, 12, 622062. [Google Scholar] [CrossRef]
- Negi, A.; Kumar, K.; Kumar, K. Classification and detection of citrus diseases using deep learning. In Data science and its applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021; pp. 63–85. [Google Scholar]
- Dananjayan, S.; Tang, Y.; Zhuang, J.; Hou, C.; Luo, S. Assessment of state-of-the-art deep learning based citrus disease detection techniques using annotated optical leaf images. Comput. Electron. Agric. 2022, 193, 106658. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, X.; Dong, C.; Tong, T.; Yang, C.; Chen, R.; Yang, X. Deep convolutional network for citrus leaf diseases recognition. In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 16–18 December 2019; pp. 1490–1494. [Google Scholar]
- Senthilkumar, C.; Kamarasan, M. An optimal weighted segmentation with hough transform based feature extraction and classification model for citrus disease. In Proceedings of the 2020 IEEE International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–28 February 2020; pp. 215–220. [Google Scholar]
- Syed-Ab-Rahman, S.F.; Hesamian, M.H.; Prasad, M. Citrus disease detection and classification using end-to-end anchor-based deep learning model. Appl. Intell. 2022, 52, 927–938. [Google Scholar] [CrossRef]
- Xing, S.; Lee, M.; Lee, K. Citrus pests and diseases recognition model using weakly dense connected convolution network. Sensors 2019, 19, 3195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 2019, 161, 272–279. [Google Scholar] [CrossRef]
- Akshai, K.P.; Anitha, J. Plant disease classification using deep learning. In Proceedings of the 2021 IEEE 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India, 13–14 May 2021; pp. 407–411. [Google Scholar]
- Kumar, A.; Razi, R.; Singh, A.; Das, H. Res-vgg: A novel model for plant disease detection by fusing vgg16 and resnet models. In International Conference on Machine Learning, Image Processing, Network Security and Data Sciences; Springer: Singapore, 2020. [Google Scholar]
- Wang, X.; Zhang, M.; Zhu, J.; Geng, S. Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN). Int. J. Remote Sens. 2008, 29, 1693–1706. [Google Scholar] [CrossRef]
- Singh, V.; Misra, A.K. Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf. Process. Agric. 2017, 4, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, S.; Mishra, A.; Maja, J.M.; Ehsani, R. Visible-near infrared spectroscopy for detection of Huanglongbing in citrus orchards. Comput. Electron. Agric. 2011, 77, 127–134. [Google Scholar] [CrossRef]
- Trivedi, J.; Shamnani, Y.; Gajjar, R. Plant leaf disease detection using machine learning. In International Conference on Emerging Technology Trends in Electronics Communication and Networking; Springer: Singapore, 2020. [Google Scholar]
- Amara, J.; Bouaziz, B.; Algergawy, A. A Deep Learning-Based Approach for Banana Leaf Diseases Classification; Datenbanksysteme für Business, Technologie und Web (BTW 2017)-Workshopband; Gesellschaft fur Informatik: Bonn, Germany, 2017; Volume 266, pp. 79–88. [Google Scholar]
- Mokhtar, U.; Ali, M.A.; Hassenian, A.E.; Hefny, H. Tomato leaves diseases detection approach based on support vector machines. In Proceedings of the 2015 IEEE 11th International computer engineering conference (ICENCO), Cairo, Egypt, 29–30 December 2015; pp. 246–250. [Google Scholar]
- Iniyan, S.; Jebakumar, R.; Mangalraj, P.; Mohit, M.; Nanda, A. Plant disease identification and detection using support vector machines and artificial neural networks. In Artificial Intelligence and Evolutionary Computations in Engineering Systems; Springer: Singapore, 2020; pp. 15–27. [Google Scholar]
- Sethy, P.K.; Barpanda, N.K.; Rath, A.K.; Behera, S.K. Image processing techniques for diagnosing rice plant disease: A survey. Procedia Comput. Sci. 2020, 167, 516–530. [Google Scholar] [CrossRef]
- Khan, R.U.; Khan, K.; Albattah, W.; Qamar, A.M. Image-based detection of plant diseases: From classical machine learning to deep learning journey. Wirel. Commun. Mob. Comput. 2021, 2021, 5541859. [Google Scholar] [CrossRef]
- Harakannanavar, S.S.; Rudagi, J.M.; Puranikmath, V.I.; Siddiqua, A.; Pramodhini, R. Plant Leaf Disease Detection using Computer Vision and Machine Learning Algorithms. Glob. Transitions Proc. 2022, 3, 305–310. [Google Scholar] [CrossRef]
- Luaibi, A.R.; Salman, T.M.; Miry, A.H. Detection of citrus leaf diseases using a deep learning technique. Int. J. Electr. Comput. Eng. 2021, 11, 1719. [Google Scholar] [CrossRef]
- Bühlmann, P. Bagging, boosting and ensemble methods. In Handbook of Computational Statistics; Springer: Berlin/Heidelberg, Germany, 2012; pp. 985–1022. [Google Scholar]
- Izenman, A.J. Linear discriminant analysis. In Modern Multivariate Statistical Techniques; Springer: New York, NY, USA, 2013; pp. 237–280. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Hossain, M.S.; Al-Hammadi, M.; Muhammad, G. Automatic fruit classification using deep learning for industrial applications. IEEE Trans. Ind. Inf. 2018, 15, 1027–1034. [Google Scholar] [CrossRef]
- Nasir, I.M.; Bibi, A.; Shah, J.H.; Khan, M.A.; Sharif, M.; Iqbal, K.; Kadry, S. Deep Learning-Based Classification of Fruit Diseases: An Application for Precision Agriculture; Tech Science Press: Henderson, NV, USA, 2021. [Google Scholar]
- Khanramaki, M.; Asli-Ardeh, E.A.; Kozegar, E. Citrus pests classification using an ensemble of deep learning models. Comput. Electron. Agric. 2021, 186, 106192. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Houlsby, N. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Manikandan, S. Data transformation. J. Pharmacol. Pharmacother. 2010, 1, 126. [Google Scholar] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems 30, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Gotmare, A.; Keskar, N.S.; Xiong, C.; Socher, R. A closer look at deep learning heuristics: Learning rate restarts, warmup and distillation. arXiv 2018, arXiv:1810.13243. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Wey, T.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Das, A.K. Citrus canker-A review. J. Appl. Hortic. 2003, 5, 52–60. [Google Scholar] [CrossRef]
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Yang, L.-H.; Huang, H.; Wang, J.-J. Antioxidant responses of citrus red mite, Panonychus citri (McGregor)(Acari: Tetranychidae), exposed to thermal stress. J. Insect Physiol. 2010, 56, 1871–1876. [Google Scholar] [CrossRef] [PubMed]
- Halbert, S.E. Toxoptera Citricida (Kirkaldy), Brown Citrus Aphid: Identification, Biology and Management Strategies; Fla. Department Agric. & Consumer Services, Division of Plant Industry: Gainesville, FL, USA, 1996.
- Shaha, M.; Pawar, M. Transfer learning for image classification. In Proceedings of the 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp. 656–660. [Google Scholar]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, H.; Kumar, A.; Grauman, K.; Rosing, T.; Feris, R. Spottune: Transfer learning through adaptive finetuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4805–4814. [Google Scholar]
- Flask. Available online: https://flask.palletsprojects.com/en/2.1.x/ (accessed on 20 October 2022).
- Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures; University of California: Irvine, CA, USA, 2000. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-shot refinement neural network for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4203–4212. [Google Scholar]
Model Name | Parameters |
---|---|
VGGNet16 | 134,285,126 |
ResNet50 | 23,520,326 |
DenseNet161 | 26,485,254 |
ViT_b_16 | 85,803,270 |
EfficientNet_b0 | 4,015,234 |
Citrus Pest Disease Type | Training Images | Validation Images | Test Images | Total Images | Image Size |
---|---|---|---|---|---|
Citrus Fruit Normal | 2034 | 225 | 255 | 2545 | 1920 × 1080 |
Citrus Fruit CBC | 1372 | 172 | 172 | 1716 | 1920 × 1080 |
Citrus Leaf Normal | 1965 | 245 | 245 | 2455 | 1920 × 1080 |
Citrus Leaf CBC | 7642 | 955 | 955 | 9552 | 1920 × 1080 |
Citrus Leaf Panonychus citri | 1452 | 181 | 181 | 1814 | 1920 × 1080 |
Citrus Leaf Toxoptera citricida | 1534 | 192 | 192 | 1918 | 1920 × 1080 |
Total | 16,000 | 2000 | 2000 | 20,000 |
Model | Accuracy | F1 Score | Class | Parameters | Parameters |
---|---|---|---|---|---|
VGG16 | 0.977 | 0.967 | F_Normal | 0.985 | 0.982 |
F_CBC | 0.974 | 0.981 | |||
L_Normal | 0.948 | 0.971 | |||
L_CBC | 0.989 | 0.999 | |||
L_P.citri | 0.952 | 0.946 | |||
L_T.citri | 0.969 | 0.90 | |||
macro avg | 0.97 | 0.97 | |||
weighted avg | 0.98 | 0.98 | |||
ResNet50 | 0.983 | 0.976 | F_Normal | 0.982 | 0.987 |
F_CBC | 0.983 | 0.974 | |||
L_Normal | 0.972 | 0.962 | |||
L_CBC | 0.999 | 0.993 | |||
L_P.citri | 0.974 | 0.964 | |||
L_T.citri | 0.938 | 0.99 | |||
macro avg | 0.97 | 0.97 | |||
weighted avg | 0.98 | 0.98 | |||
DenseNet161 | 0.984 | 0.977 | F_Normal | 0.986 | 0.986 |
F_CBC | 0.984 | 0.984 | |||
L_Normal | 0.971 | 0.964 | |||
L_CBC | 0.998 | 0.987 | |||
L_P.citri | 0.953 | 0.971 | |||
L_T.citri | 0.885 | 1.0 | |||
macro avg | 0.97 | 0.97 | |||
weighted avg | 0.98 | 0.98 | |||
EfficientNet | 0.988 | 0.982 | F_Normal | 0.995 | 0.992 |
F_CBC | 0.989 | 0.992 | |||
L_Normal | 0.995 | 0.992 | |||
L_CBC | 0.997 | 0.998 | |||
L_P.citri | 0.996 | 0.947 | |||
L_T.citri | 0.925 | 1.0 | |||
macro avg | 0.97 | 0.98 | |||
weighted avg | 0.98 | 0.98 | |||
ViT | 0.972 | 0.961 | F_Normal | 0.974 | 0.974 |
F_CBC | 0.956 | 0.956 | |||
L_Normal | 0.963 | 0.942 | |||
L_CBC | 0.996 | 0.982 | |||
L_P.citri | 0.933 | 0.955 | |||
L_T.citri | 0.914 | 0.988 | |||
macro avg | 0.97 | 0.98 | |||
weighted avg | 0.98 | 0.98 |
Model | Accuracy | F1 Score | Class | Parameters | Parameters |
---|---|---|---|---|---|
VGG16 | 0.979 | 0.97 | F_Normal | 0.992 | 0.996 |
F_CBC | 0.994 | 0.988 | |||
L_Normal | 0.996 | 0.897 | |||
L_CBC | 0.997 | 0.99 | |||
L_P.citri | 0.969 | 0.89 | |||
L_T.citri | 0.917 | 0.994 | |||
macro avg | 0.96 | 0.98 | |||
weighted avg | 0.98 | 0.98 | |||
ResNet50 | 0.986 | 0.98 | F_Normal | 0.992 | 0.996 |
F_CBC | 0.994 | 0.983 | |||
L_Normal | 0.956 | 0.984 | |||
L_CBC | 0.994 | 0.997 | |||
L_P.citri | 0.972 | 0.962 | |||
L_T.citri | 0.948 | 0.984 | |||
macro avg | 0.98 | 0.98 | |||
weighted avg | 0.99 | 0.99 | |||
DenseNet161 | 0.985 | 0.977 | F_Normal | 1.0 | 1.0 |
F_CBC | 1.0 | 1.0 | |||
L_Normal | 0.971 | 0.96 | |||
L_CBC | 0.997 | 0.993 | |||
L_P.citri | 0.983 | 0.962 | |||
L_T.citri | 1.0 | 0.943 | |||
macro avg | 0.98 | 0.99 | |||
weighted avg | 0.99 | 0.99 | |||
EfficientNet | 0.99 | 0.986 | F_Normal | 0.984 | 1.0 |
F_CBC | 1.0 | 0.977 | |||
L_Normal | 0.988 | 0.976 | |||
L_CBC | 0.998 | 0.994 | |||
L_P.citri | 0.967 | 0.994 | |||
L_T.citri | 0.974 | 0.984 | |||
macro avg | 0.99 | 0.99 | |||
weighted avg | 0.99 | 0.99 | |||
ViT | 0.981 | 0.975 | F_Normal | 0.992 | 0.984 |
F_CBC | 0.977 | 0.988 | |||
L_Normal | 0.976 | 0.941 | |||
L_CBC | 0.994 | 0.989 | |||
L_P.citri | 0.928 | 0.971 | |||
L_T.citri | 0.964 | 0.995 | |||
macro avg | 0.97 | 0.98 | |||
weighted avg | 0.98 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Choi, G.; Park, H.-C.; Choi, C. Automatic Classification Service System for Citrus Pest Recognition Based on Deep Learning. Sensors 2022, 22, 8911. https://doi.org/10.3390/s22228911
Lee S, Choi G, Park H-C, Choi C. Automatic Classification Service System for Citrus Pest Recognition Based on Deep Learning. Sensors. 2022; 22(22):8911. https://doi.org/10.3390/s22228911
Chicago/Turabian StyleLee, Saebom, Gyuho Choi, Hyun-Cheol Park, and Chang Choi. 2022. "Automatic Classification Service System for Citrus Pest Recognition Based on Deep Learning" Sensors 22, no. 22: 8911. https://doi.org/10.3390/s22228911