Fixed-Time Coverage Control of Mobile Robot Networks Considering the Time Cost Metric
Abstract
:1. Introduction
2. Preliminaries
3. Time Optimal Coverage Analysis
4. Fixed-Time Coverage Control
5. Simulation Examples
6. Conclusions
- When it is necessary to respond quickly to accidents, the coverage time cost is introduced to measure the coverage effect of the robot network on the task area;
- Based on the TCMF, a fixed-time robust controller was designed to drive the robot network to achieve the minimum coverage time cost considering input disturbances;
- The conditions that the maximum value of the control inputs should satisfy were obtained.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, D.; Li, X.; Song, S. Finite-time synchronization for delayed complex dynamical networks with synchronizing or desynchronizing impulses. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, R.; Raajini, X.M.; Nayyar, A.; Sanjeevikumar, P.; Hossain, E.; Ertas, A.H. Bold: Bio-inspired optimized leader election for multiple drones. Sensors 2020, 20, 3134. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.W.; Wen, G.; Yu, X.; Guan, Z.H.; Huang, T. Delayed impulsive control for consensus of multiagent systems with switching communication graphs. IEEE Trans. Cybern. 2019, 50, 3045–3055. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.F.; Liu, Z.W.; Wen, G.; Yu, X.; Huang, T. Hierarchical controller-estimator for coordination of networked Euler–Lagrange systems. IEEE Trans. Cybern. 2019, 50, 2450–2461. [Google Scholar] [CrossRef]
- Astolfi, A.; Karagiannis, D.; Ortega, R. Nonlinear and Adaptive Control with Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 187. [Google Scholar]
- Cortés, J.; Egerstedt, M. Coordinated control of multi-robot systems: A survey. SICE J. Control. Meas. Syst. Integr. 2017, 10, 495–503. [Google Scholar]
- Bai, Y.; Wang, Y.; Svinin, M.; Magid, E.; Sun, R. Adaptive multi-agent coverage control with obstacle avoidance. IEEE Control Syst. Lett. 2021, 6, 944–949. [Google Scholar] [CrossRef]
- Arslan, Ö. Statistical coverage control of mobile sensor networks. IEEE Trans. Robot. 2019, 35, 889–908. [Google Scholar] [CrossRef]
- Cortes, J.; Martinez, S.; Karatas, T.; Bullo, F. Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 2004, 20, 243–255. [Google Scholar] [CrossRef]
- Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F. Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning. IEEE Trans. Veh. Technol. 2020, 69, 14413–14423. [Google Scholar] [CrossRef]
- Savkin, A.V.; Huang, H. Deployment of unmanned aerial vehicle base stations for optimal quality of coverage. IEEE Wirel. Commun. Lett. 2018, 8, 321–324. [Google Scholar] [CrossRef]
- Laventall, K.; Cortés, J. Coverage control by multi-robot networks with limited-range anisotropic sensory. Int. J. Control 2009, 82, 1113–1121. [Google Scholar] [CrossRef]
- Pierson, A.; Figueiredo, L.C.; Pimenta, L.C.; Schwager, M. Adapting to sensing and actuation variations in multi-robot coverage. Int. J. Robot. Res. 2017, 36, 337–354. [Google Scholar] [CrossRef] [Green Version]
- Kantaros, Y.; Thanou, M.; Tzes, A. Distributed coverage control for concave areas by a heterogeneous robot–swarm with visibility sensing constraints. Automatica 2015, 53, 195–207. [Google Scholar] [CrossRef]
- Santos, M.; Diaz-Mercado, Y.; Egerstedt, M. Coverage control for multirobot teams with heterogeneous sensing capabilities. IEEE Robot. Autom. Lett. 2018, 3, 919–925. [Google Scholar] [CrossRef]
- Song, C.; Fan, Y. Coverage control for mobile sensor networks with limited communication ranges on a circle. Automatica 2018, 92, 155–161. [Google Scholar] [CrossRef]
- Schwager, M.; Rus, D.; Slotine, J.J. Decentralized, adaptive coverage control for networked robots. Int. J. Robot. Res. 2009, 28, 357–375. [Google Scholar] [CrossRef] [Green Version]
- Todescato, M.; Carron, A.; Carli, R.; Pillonetto, G.; Schenato, L. Multi-robots gaussian estimation and coverage control: From client–server to peer-to-peer architectures. Automatica 2017, 80, 284–294. [Google Scholar] [CrossRef]
- Miah, S.; Panah, A.Y.; Fallah, M.M.H.; Spinello, D. Generalized non-autonomous metric optimization for area coverage problems with mobile autonomous agents. Automatica 2017, 80, 295–299. [Google Scholar] [CrossRef]
- Luo, K.; Chi, M.; Chen, J.; Guan, Z.H.; Cai, C.X.; Zhang, D.X. Distributed coordination of multiple mobile actuators for pollution neutralization. Neurocomputing 2018, 316, 10–19. [Google Scholar] [CrossRef]
- Yu, D.; Xu, H.; Chen, C.P.; Bai, W.; Wang, Z. Dynamic coverage control based on k-means. IEEE Trans. Ind. Electron. 2021, 69, 5333–5341. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, Z.W.; Chi, M.; Dou, Y.; He, D.; Qin, Y. Coverage control of unicycle multi-agent network in dynamic environment. Math. Methods Appl. Sci. 2021. [Google Scholar] [CrossRef]
- Sun, Q.; Chi, M.; Liu, Z.W.; He, D. Observer-Based coverage control of unicycle mobile robot network in dynamic environment. J. Frankl. Inst. 2022. [Google Scholar] [CrossRef]
- Ru, Y.; Martinez, S. Coverage control in constant flow environments based on a mixed energy–time metric. Automatica 2013, 49, 2632–2640. [Google Scholar] [CrossRef]
- Zuo, L.; Chen, J.; Yan, W.; Shi, Y. Time-optimal coverage control for multiple unicycles in a drift field. Inf. Sci. 2016, 373, 571–580. [Google Scholar] [CrossRef]
- Kim, S.; Santos, M.; Guerrero-Bonilla, L.; Yezzi, A.; Egerstedt, M. Coverage Control of Mobile Robots with Different Maximum Speeds for Time-Sensitive Applications. IEEE Robot. Autom. Lett. 2022, 7, 3001–3007. [Google Scholar] [CrossRef]
- Ramírez-Rodríguez, J.; Tlatelpa-Osorio, Y.E.; Rodríguez-Cortés, H. Low level controller for quadrotors. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 1155–1161. [Google Scholar]
- Yayli, U.C.; Kimet, C.; Duru, A.; Cetir, O.; Torun, U.; Aydogan, A.C.; Padmanaban, S.; Ertas, A.H. Design optimization of a fixed wing aircraft. Adv. Aircr. Spacecr. Sci. 2017, 4, 65. [Google Scholar] [CrossRef]
- Martinović, L.; Zečević, Ž.; Krstajić, B. Cooperative tracking control of single-integrator multi-agent systems with multiple leaders. Eur. J. Control 2022, 63, 232–239. [Google Scholar] [CrossRef]
- Daya, F.J.; Sanjeevikumar, P.; Blaabjerg, F.; Wheeler, P.W.; Olorunfemi Ojo, J.; Ertas, A.H. Analysis of wavelet controller for robustness in electronic differential of electric vehicles: An investigation and numerical developments. Electr. Power Compon. Syst. 2016, 44, 763–773. [Google Scholar] [CrossRef] [Green Version]
- Martínez, E.A.; Ríos, H.; Mera, M. Robust tracking control design for unicycle mobile robots with input saturation. Control Eng. Pract. 2021, 107, 104676. [Google Scholar] [CrossRef]
- Qin, H.; Li, C.; Sun, Y.; Li, X.; Du, Y.; Deng, Z. Finite-time trajectory tracking control of unmanned surface vessel with error constraints and input saturations. J. Frankl. Inst. 2020, 357, 11472–11495. [Google Scholar] [CrossRef]
- Lazarowska, A.; Żak, A. A Concept of Autonomous Multi-Agent Navigation System for Unmanned Surface Vessels. Electronics 2022, 11, 2853. [Google Scholar] [CrossRef]
- Abdulghafoor, A.Z.; Bakolas, E. Two-Level Control of Multiagent Networks for Dynamic Coverage Problems. IEEE Trans. Cybern. 2021. [Google Scholar] [CrossRef] [PubMed]
- Erwig, M. The graph Voronoi diagram with applications. Netw. Int. J. 2000, 36, 156–163. [Google Scholar] [CrossRef]
- Du, Q.; Faber, V.; Gunzburger, M. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Rev. 1999, 41, 637–676. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 2011, 57, 2106–2110. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, Z.; Chen, C.L.P.; Zhang, Y. Adaptive Fuzzy Fixed-Time Control of Switched Systems: Mode-Dependent Power Integrator Method. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 6998–7012. [Google Scholar] [CrossRef]
- Zhuang, M.L.; Song, S.M. Fixed-time Coordinated Attitude Tracking Control for Spacecraft Formation Flying Considering Input Amplitude Constraint. Int. J. Control. Autom. Syst. 2022, 20, 2129–2147. [Google Scholar] [CrossRef]
- Schwager, M.; Vitus, M.P.; Powers, S.; Rus, D.; Tomlin, C.J. Robust adaptive coverage control for robotic sensor networks. IEEE Trans. Control Netw. Syst. 2015, 4, 462–476. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Liao, T.; Liu, Z.-W.; Chi, M.; He, D. Fixed-Time Coverage Control of Mobile Robot Networks Considering the Time Cost Metric. Sensors 2022, 22, 8938. https://doi.org/10.3390/s22228938
Sun Q, Liao T, Liu Z-W, Chi M, He D. Fixed-Time Coverage Control of Mobile Robot Networks Considering the Time Cost Metric. Sensors. 2022; 22(22):8938. https://doi.org/10.3390/s22228938
Chicago/Turabian StyleSun, Qihai, Tianjun Liao, Zhi-Wei Liu, Ming Chi, and Dingxin He. 2022. "Fixed-Time Coverage Control of Mobile Robot Networks Considering the Time Cost Metric" Sensors 22, no. 22: 8938. https://doi.org/10.3390/s22228938