Machine Learning and Wearable Sensors for the Early Detection of Balance Disorders in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Setup
2.3. Experimental Protocol
2.4. Data Analysis and Features Extraction
2.5. Machine Learning: Training and Validation
- PD vs. HC: which distinguishes between PD patients and healthy subjects;
- OFF vs. HC: which distinguishes between patients in OFF state and healthy subjects;
- ON vs. HC: which distinguishes between patients in ON state and healthy subjects;
- OFF vs. ON: which distinguishes between patients in OFF state and patients in ON state.
2.6. Performance Evaluation
3. Results
3.1. First Selection Criterion
3.2. Second Selection Criterion
3.3. Third Selection Criterion
3.4. Goodness Index
3.5. Best Performing Algorithms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorsey, E.R.; Elbaz, A.; Nichols, E.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Adsuar, J.C.; Ansha, M.G.; Brayne, C.; Choi, J.-Y.J.; et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 939–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davie, C.A. A review of Parkinson’s disease. Br. Med. Bull. 2008, 86, 109–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Zampogna, A.; Cavallieri, F.; Bove, F.; Suppa, A.; Castrioto, A.; Meoni, S.; Pélissier, P.; Schmitt, E.; Bichon, A.; Lhommée, E.; et al. Axial impairment and falls in Parkinson’s disease: 15 years of subthalamic deep brain stimulation. NPJ Park. Dis. 2022, 8, 121. [Google Scholar] [CrossRef] [PubMed]
- Crouse, J.; Phillips, J.R.; Jahanshahi, M.; Moustafa, A.A. Postural instability and falls in Parkinson’s disease. Rev. Neurosci. 2016, 27, 549–555. [Google Scholar] [CrossRef]
- Nonnekes, J.; Goselink, R.; Weerdesteyn, V.; Bloem, B.R. The Retropulsion Test: A Good Evaluation of Postural Instability in Parkinson’s Disease? J. Park. Dis. 2015, 5, 43–47. [Google Scholar] [CrossRef]
- Palakurthi, B.; Burugupally, S.P. Postural instability in Parkinson’s disease: A review. Brain Sci. 2019, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Nonnekes, J.; de Kam, D.; Geurts, A.C.; Weerdesteyn, V.; Bloem, B.R. Unraveling the mechanisms underlying postural instability in Parkinson’s disease using dynamic posturography. Expert Rev. Neurother. 2013, 13, 1303–1308. [Google Scholar] [CrossRef]
- Kamieniarz, A.; Michalska, J.; Marszałek, W.; Stania, M.; Słomka, K.J.; Gorzkowska, A.; Juras, G.; Okun, M.S.; Christou, E.A. Detection of postural control in early Parkinson’s disease: Clinical testing vs. modulation of center of pressure. PLoS ONE 2021, 16, e0245353. [Google Scholar] [CrossRef]
- Yu, Y.; Liang, S.; Wang, Y.; Zhao, Y.; Zhao, J.; Li, H.; Wu, J.; Cheng, Y.; Wu, F.; Wu, J. Quantitative Analysis of Postural Instability in Patients with Parkinson’s Disease. Park. Dis. 2021, 2021, 5681870. [Google Scholar] [CrossRef]
- Zampogna, A.; Mileti, I.; Martelli, F.; Paoloni, M.; Del Prete, Z.; Palermo, E.; Suppa, A. Early balance impairment in Parkinson’s Disease: Evidence from Robot-assisted axial rotations. Clin. Neurophysiol. 2021, 132, 2422–2430. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, L.; Buscarino, A. Smart Materials. Materials 2022, 15, 6307. [Google Scholar] [CrossRef] [PubMed]
- Mileti, I.; Taborri, J.; D’Alvia, L.; Parisi, S.; Ditto, M.C.; Peroni, C.L.; Scarati, M.; Priora, M.; Rossi, S.; Fusaro, E.; et al. Accuracy Evaluation and Clinical Application of an Optimized Solution for Measuring Spatio-Temporal Gait Parameters. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020; IEEE: Bari, Italy, 2020. [Google Scholar] [CrossRef]
- DrAlvia, L.; Scalona, E.; Palermo, E.; Del Prete, Z.; Pittella, E.; Pisa, S.; Piuzzi, E. Tetrapolar Low-Cost Systems for Thoracic Impedance Plethysmography. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018. [Google Scholar] [CrossRef]
- Jeon, H.; Lee, W.-W.; Park, H.; Lee, H.J.; Kim, S.K.; Kim, H.B.; Jeon, B.; Park, K.S. Automatic Classification of Tremor Severity in Parkinson’s Disease Using a Wearable Device. Sensors 2017, 17, 2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borzì, L.; Mazzetta, I.; Zampogna, A.; Suppa, A.; Irrera, F.; Olmo, G. Predicting Axial Impairment in Parkinson’s Disease through a Single Inertial Sensor. Sensors 2022, 22, 412. [Google Scholar] [CrossRef] [PubMed]
- Borzì, L.; Mazzetta, I.; Zampogna, A.; Suppa, A.; Olmo, G.; Irrera, F. Prediction of Freezing of Gait in Parkinson’s Disease Using Wearables and Machine Learning. Sensors 2021, 21, 614. [Google Scholar] [CrossRef]
- Asci, F.; Scardapane, S.; Zampogna, A.; D’Onofrio, V.; Testa, L.; Patera, M.; Falletti, M.; Marsili, L.; Suppa, A. Handwriting Declines with Human Aging: A Machine Learning Study. Front. Aging Neurosci. 2022, 14, 889930. [Google Scholar] [CrossRef]
- Massaro, A.; Ricci, G.; Selicato, S.; Raminelli, S.; Galiano, A. Decisional Support System with Artificial Intelligence oriented on Health Prediction using a Wearable Device and Big Data. In Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Roma, Italy, 3–5 June 2020. [Google Scholar]
- Majnarić, L.T.; Babič, F.; O’Sullivan, S.; Holzinger, A. AI and Big Data in Healthcare: Towards a More Comprehensive Research Framework for Multimorbidity. J. Clin. Med. 2021, 10, 766. [Google Scholar] [CrossRef]
- Massaro, A.; Maritati, V.; Savino, N.; Galiano, A. Neural Networks for Automated Smart Health Platforms oriented on Heart Predictive Diagnostic Big Data Systems. In Proceedings of the 2018 AEIT International Annual Conference, Bari, Italy, 3–5 October 2018. [Google Scholar]
- Dias, D.; Paulo Silva Cunha, J. Wearable Health Devices—Vital Sign Monitoring, Systems and Technologies. Sensors 2018, 18, 2414. [Google Scholar] [CrossRef]
- Aich, S.; Pradhan, P.M.; Park, J.; Sethi, N.; Vathsa, V.S.S.; Kim, H.-C. A Validation Study of Freezing of Gait (FoG) Detection and Machine-Learning-Based FoG Prediction Using Estimated Gait Characteristics with a Wearable Accelerometer. Sensors 2018, 18, 3287. [Google Scholar] [CrossRef] [Green Version]
- Parisi, F.; Ferrari, G.; Giuberti, M.; Contin, L.; Cimolin, V.; Azzaro, C.; Albani, G.; Mauro, A. Body-Sensor-Network-Based Kinematic Characterization and Comparative Outlook of UPDRS Scoring in Leg Agility, Sit-to-Stand, and Gait Tasks in Parkinson’s Disease. IEEE J. Biomed. Health Inform. 2015, 19, 1777–1793. [Google Scholar] [CrossRef]
- Caramia, C.; Torricelli, D.; Schmid, M.; Munoz-Gonzalez, A.; Gonzalez-Vargas, J.; Grandas, F.; Pons, J.L. IMU-Based Classification of Parkinson’s Disease From Gait: A Sensitivity Analysis on Sensor Location and Feature Selection. IEEE J. Biomed. Health Inform. 2018, 22, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Aich, S.; Youn, J.; Chakraborty, S.; Pradhan, P.M.; Park, J.H.; Park, S.; Park, J. A Supervised Machine Learning Approach to Detect the on/off State in Parkinson’s Disease Using Wearable Based Gait Signals. Diagnostics 2020, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Cancela, J.; Pansera, M.; Arredondo, M.; Estrada, J.; Pastorino, M.; Pastor-Sanz, L.; Villalar, J. A comprehensive motor symptom monitoring and management system: The bradykinesia case. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2010, 2010, 1008–1011. [Google Scholar] [CrossRef]
- Exley, T.; Moudy, S.; Patterson, R.M.; Kim, J.; Albert, M.V. Predicting UPDRS Motor Symptoms in Individuals with Parkinson’s Disease from Force Plates Using Machine Learning. IEEE J. Biomed. Health Inform. 2022, 26, 3486–3494. [Google Scholar] [CrossRef] [PubMed]
- Fadil, R.; Huether, A.; Brunnemer, R.; Blaber, A.P.; Lou, J.-S.; Tavakolian, K. Early Detection of Parkinson’s Disease Using Center of Pressure Data and Machine Learning. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 31 October–4 November 2021; pp. 2433–2436. [Google Scholar] [CrossRef]
- Mileti, I.; Taborri, J.; Rossi, S.; Del Prete, Z.; Paoloni, M.; Suppa, A.; Palermo, E. Measuring age-related differences in kinematic postural strategies under yaw perturbation. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018. [Google Scholar] [CrossRef]
- Taborri, J.; Mileti, I.; Del Prete, Z.; Rossi, S.; Palermo, E. Yaw Postural Perturbation Through Robotic Platform: Aging Effects on Muscle Synergies. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 916–921. [Google Scholar] [CrossRef]
- Palermo, E.; Rossi, S.; Marini, F.; Patane, F.; Cappa, P. Experimental evaluation of accuracy and repeatability of a novel body-to-sensor calibration procedure for inertial sensor-based gait analysis. Measurement 2014, 52, 145–155. [Google Scholar] [CrossRef]
- Mileti, I.; Taborri, J.; Rossi, S.; Del Prete, Z.; Paoloni, M.; Suppa, A.; Palermo, E. Reactive Postural Responses to Continuous Yaw Perturbations in Healthy Humans: The Effect of Aging. Sensors 2020, 20, 63. [Google Scholar] [CrossRef] [Green Version]
- Juba, B.; Le, H.S. Precision-Recall versus Accuracy and the Role of Large Data Sets. [Online]. Available online: www.aaai.org (accessed on 5 December 2022).
- Taborri, J.; Palermo, E.; Rossi, S. Automatic Detection of Faults in Race Walking: A Comparative Analysis of Machine-Learning Algorithms Fed with Inertial Sensor Data. Sensors 2019, 19, 1461. [Google Scholar] [CrossRef] [Green Version]
- Beretta, V.; Vitório, R.; dos Santos, P.C.R.; Orcioli-Silva, D.; Gobbi, L.T.B. Postural control after unexpected external perturbation: Effects of Parkinson’s disease subtype. Hum. Mov. Sci. 2019, 64, 12–18. [Google Scholar] [CrossRef]
- Halmi, Z.; Dinya, E.; Málly, J. Destroyed non-dopaminergic pathways in the early stage of Parkinson’s disease assessed by posturography. Brain Res. Bull. 2019, 152, 45–51. [Google Scholar] [CrossRef]
- Nijhuis, L.B.O.; Allum, J.H.J.; Nanhoe-Mahabier, W.; Bloem, B.R. Influence of Perturbation Velocity on Balance Control in Parkinson’s Disease. PLoS ONE 2014, 9, e86650. [Google Scholar] [CrossRef] [Green Version]
- Tripoliti, E.E.; Tzallas, A.T.; Tsipouras, M.G.; Rigas, G.; Bougia, P.; Leontiou, M.; Konitsiotis, S.; Chondrogiorgi, M.; Tsouli, S.; Fotiadis, D.I. Automatic detection of freezing of gait events in patients with Parkinson’s disease. Comput. Methods Programs Biomed. 2013, 110, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Klucken, J.; Barth, J.; Kugler, P.; Schlachetzki, J.; Henze, T.; Marxreiter, F.; Kohl, Z.; Steidl, R.; Hornegger, J.; Eskofier, B.; et al. Unbiased and Mobile Gait Analysis Detects Motor Impairment in Parkinson’s Disease. PLoS ONE 2013, 8, e56956. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, N.; Miller, A.; Wade, E. Towards Real-Time Prediction of Freezing of Gait in Patients with Parkinson’s Disease: Addressing the Class Imbalance Problem. Sensors 2019, 19, 3898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atri, R.; Urban, K.; Marebwa, B.; Simuni, T.; Tanner, C.; Siderowf, A.; Frasier, M.; Haas, M.; Lancashire, L. Deep Learning for Daily Monitoring of Parkinson’s Disease Outside the Clinic Using Wearable Sensors. Sensors 2022, 22, 6831. [Google Scholar] [CrossRef]
- Keijsers, L.W.; Horstink, M.W.; Gielen, S.C. Automatic assessment of levodopa-induced dyskinesias in daily life by neural networks. Mov. Disord. 2003, 18, 70–80. [Google Scholar] [CrossRef]
- Keijsers, N.L.; Horstink, M.W.; Gielen, S.C. Ambulatory motor assessment in Parkinson’s disease. Mov. Disord. 2006, 21, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Hssayeni, M.D.; Burack, M.A.; Jimenez-Shahed, J.; Ghoraani, B. Assessment of response to medication in individuals with Parkinson’s disease. Med. Eng. Phys. 2019, 67, 33–43. [Google Scholar] [CrossRef]
- Di Giulio, I.; George, R.J.S.; Kalliolia, E.; Peters, A.L.; Limousin, P.; Day, B.L. Maintaining balance against force perturbations: Impaired mechanisms unresponsive to levodopa in Parkinson’s disease. J. Neurophysiol. 2016, 116, 493–502. [Google Scholar] [CrossRef] [Green Version]
- De Kam, D.; Nonnekes, J.; Nijhuis, L.B.O.; Geurts, A.C.H.; Bloem, B.R.; Weerdesteyn, V. Dopaminergic medication does not improve stepping responses following backward and forward balance perturbations in patients with Parkinson’s disease. J. Neurol. 2014, 261, 2330–2337. [Google Scholar] [CrossRef]
- Suppa, A.; Kita, A.; Leodori, G.; Zampogna, A.; Nicolini, E.; Lorenzi, P.; Rao, R.; Irrera, F. l-DOPA and Freezing of Gait in Parkinson’s Disease: Objective Assessment through a Wearable Wireless System. Front. Neurol. 2017, 8, 406. [Google Scholar] [CrossRef]
Patients | PD Onset | H&Y | MDS-UPDRSIII | MMSE | PIGD | BERG |
---|---|---|---|---|---|---|
1 | 2017 | 1.5 | 27 | 30 | 1 | 56 |
2 | 2010 | 2 | 41 | 30 | 6 | 47 |
3 | 2013 | 1.5 | 26 | 30 | 4 | 50 |
4 | 2010 | 2 | 30 | 30 | 2 | 56 |
5 | 2013 | 1.5 | 15 | 30 | 2 | 55 |
6 | 2010 | 2 | 43 | 30 | 2 | 56 |
7 | 2015 | 1.5 | 24 | 30 | 1 | 56 |
8 | 2015 | 2 | 37 | 29 | 1 | 55 |
9 | 2011 | 2 | 45 | 25 | 7 | 45 |
10 | 2015 | 1.5 | 25 | 29 | 2 | 56 |
11 | 2016 | 1.5 | 22 | 28 | 1 | 55 |
12 | 2015 | 1.5 | 28 | 29 | 2 | 52 |
13 | 2018 | 1 | 14 | 29 | 2 | 56 |
14 | 2015 | 1.5 | 21 | 30 | 4 | 56 |
15 | 2015 | 1.5 | 21 | 25 | 2 | 50 |
16 | 2012 | 2 | 24 | 30 | 3 | 52 |
17 | 2010 | 2 | 25 | 30 | 5 | 54 |
18 | 2014 | 1 | 12 | 30 | 3 | 54 |
19 | 2016 | 1 | 10 | 30 | 2 | 52 |
20 | 2015 | 2 | 28 | 30 | 7 | 46 |
Mean | - | 1.7 | 25.9 | 29.2 | 2.9 | 52.9 |
SD | - | 0.5 | 9.8 | 1.5 | 1.9 | 3.6 |
Perturbation | Low | Medium | High |
---|---|---|---|
Frequency (Hz) | 0.2 | 0.3 | 0.5 |
Peak amplitude (°) | ±55 | ±55 | ±35 |
Peak angular acceleration (°/s2) | 0.25 | 0.40 | 0.50 |
DTf | DTm | DTc | kNNf | kNNm | kNNc | kNNco | kNNcu | kNNw | SVMl | SVMq | SVMcu | ANN | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PD vs. HC | ACC | 84.7 | 84.7 | 86.9 | 95.6 | 86.1 | 73.7 | 86.1 | 83.9 | 89.1 | 88.3 | 89.1 | 92.7 | 88.3 |
TPR | 89.1 | 89.1 | 93.1 | 99.0 | 100 | / | 97.0 | 100 | 100 | 100 | 99.0 | 100 | 88.3 | |
PPV | 90.0 | 90.0 | 89.5 | 95.2 | 84.2 | / | 86.0 | 82.1 | 87.1 | 86.3 | 87.7 | 91 | 97.0 | |
G | 0.30 | 0.29 | 0.31 | 0.14 | 0.52 | / | 0.45 | 0.61 | 0.42 | 0.43 | 0.39 | 0.28 | 0.16 | |
OFF vs. HC | ACC | 88.9 | 88.9 | 90.9 | 89.9 | 79.8 | 60.6 | 77.8 | 75.8 | 83.8 | 79.8 | 83.8 | 88.9 | 82.8 |
TPR | 86.7 | 86.7 | 90.0 | 95.0 | / | / | / | / | 100 | / | 95.0 | 96.7 | 81.2 | |
PPV | 94.5 | 94.5 | 94.7 | 89.1 | / | / | / | / | 78.9 | / | 81.4 | 86.6 | 93.3 | |
G | 0.20 | 0.20 | 0.12 | 0.18 | / | / | / | / | / | / | 0.33 | 0.23 | 0.23 | |
ON vs. HC | ACC | 81.8 | 81.8 | 77.8 | 89.9 | 78.8 | 60.6 | 78.8 | 77.8 | 82.8 | 81.8 | 81.8 | 84.8 | 80.8 |
TPR | 95.0 | 95.0 | / | 96.7 | / | / | / | / | 100 | 100 | 96.7 | 98.3 | 79.7 | |
PPV | 79.2 | 79.2 | / | 87.9 | / | / | / | / | 77.9 | 76.9 | 78.4 | 80.8 | / | |
G | / | / | / | 0.20 | / | / | / | / | / | / | / | 0.36 | / | |
OFF vs. ON | ACC | 66.7 | 66.7 | 57.5 | 84.2 | 50.0 | 38.3 | 50.8 | 54.2 | 75.0 | 63.3 | 77.3 | 77.5 | 53.3 |
TPR | / | / | / | 95.0 | / | / | / | / | / | / | / | / | / | |
PPV | / | / | / | 78.1 | / | / | / | / | / | / | / | / | / | |
G | / | / | / | / | / | / | / | / | / | / | / | / | / |
PD vs. HC | kNNf | Accuracy | 95.6% |
Goodness index | 0.14 | ||
Total misclassification cost | 6 | ||
Prediction speed | 660 obs/s | ||
Training time | 1.7149 s | ||
Number of neighbors | 1 | ||
Distance metric | Euclidean | ||
Distance weight | Equal | ||
OFF vs. HC | DTc | Accuracy | 90.9% |
Goodness index | 0.12 | ||
Total misclassification cost | 9 | ||
Prediction speed | 620 obs/s | ||
Training time | 1.3464 s | ||
Max number of splits | 4 | ||
Split criterion | Gini’s diversity index | ||
ON vs. HC | kNNf | Accuracy | 89.9% |
Goodness index | 0.20 | ||
Total misclassification cost | 10 | ||
Prediction speed | 440 obs/s | ||
Training time | 2.129 s | ||
Number of neighbors | 1 | ||
Distance metric | Euclidean | ||
Distance weight | Equal |
Author | Objective | Type of Task | ML Algorithm | Accuracy |
---|---|---|---|---|
This work | Classification of PD from HC | PYP | kNNf | 96% |
Aich et al. [23] | Detection of FoG | GT | SVM | 88% |
Caramia et al. [25] | Classification of PD from HC | GT | SVM | 80% |
Klucken et al. [40] | Classification of PD from HC | GT, TTHP, CT | LDA, AdaBoost, SVM | 81% |
Naghavi et al. [41] | Detection of FoG | GT | kNN, SVM, MLP | 97% |
Atri et al. [42] | Classification of PD from HC | WLE | 1D-CNNs | 90% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castelli Gattinara Di Zubiena, F.; Menna, G.; Mileti, I.; Zampogna, A.; Asci, F.; Paoloni, M.; Suppa, A.; Del Prete, Z.; Palermo, E. Machine Learning and Wearable Sensors for the Early Detection of Balance Disorders in Parkinson’s Disease. Sensors 2022, 22, 9903. https://doi.org/10.3390/s22249903
Castelli Gattinara Di Zubiena F, Menna G, Mileti I, Zampogna A, Asci F, Paoloni M, Suppa A, Del Prete Z, Palermo E. Machine Learning and Wearable Sensors for the Early Detection of Balance Disorders in Parkinson’s Disease. Sensors. 2022; 22(24):9903. https://doi.org/10.3390/s22249903
Chicago/Turabian StyleCastelli Gattinara Di Zubiena, Francesco, Greta Menna, Ilaria Mileti, Alessandro Zampogna, Francesco Asci, Marco Paoloni, Antonio Suppa, Zaccaria Del Prete, and Eduardo Palermo. 2022. "Machine Learning and Wearable Sensors for the Early Detection of Balance Disorders in Parkinson’s Disease" Sensors 22, no. 24: 9903. https://doi.org/10.3390/s22249903
APA StyleCastelli Gattinara Di Zubiena, F., Menna, G., Mileti, I., Zampogna, A., Asci, F., Paoloni, M., Suppa, A., Del Prete, Z., & Palermo, E. (2022). Machine Learning and Wearable Sensors for the Early Detection of Balance Disorders in Parkinson’s Disease. Sensors, 22(24), 9903. https://doi.org/10.3390/s22249903