Transformer-Based Weed Segmentation for Grass Management
Abstract
:1. Introduction
- Predicting accurate segmentation masks for weeds using Transformer-based architectures for the purpose of automatizing weed control with a focus on turf management.
- We investigate a range of recent Transformer models using our weed dataset and make detailed comparisons in terms of performance and complexity.
2. Related Studies
2.1. Transformer Architecture
2.2. Deep Learning (DL) Models for Weed Detection and Transformer Models in the Agricultural Sector
3. Methods
3.1. Swin Transformer
3.2. SegFormer
3.3. Segmenter
4. Dataset
4.1. Data Augmentation
4.2. Evaluation Metrics
4.2.1. Pixel Accuracy (PA) and Mean PA (mPA)
4.2.2. Intersection over Union (IoU) and Mean IoU (mIoU)
5. Results
5.1. Implementation Details
5.2. Prediction Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Hamuda, E.; Glavin, M.; Jones, E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 2016, 125, 184–199. [Google Scholar] [CrossRef]
- Sakyi, L.L.S. 2019. Available online: https://greenrootltd.com/2019/02/19/five-general-categories-of-weed-control-methods/ (accessed on 1 January 2019).
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- You, J.; Liu, W.; Lee, J. A DNN-based semantic segmentation for detecting weed and crop. Comput. Electron. Agric. 2020, 178, 105750. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Strudel, R.; Garcia, R.; Laptev, I.; Schmid, C. Segmenter: Transformer for semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 7262–7272. [Google Scholar]
- Bello, I.; Zoph, B.; Vaswani, A.; Shlens, J.; Le, Q.V. Attention augmented convolutional networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3286–3295. [Google Scholar]
- Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Levskaya, A.; Shlens, J. Stand-alone self-attention in vision models. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Zhao, H.; Jia, J.; Koltun, V. Exploring self-attention for image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10076–10085. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Vaswani, A.; Ramachandran, P.; Srinivas, A.; Parmar, N.; Hechtman, B.; Shlens, J. Scaling local self-attention for parameter efficient visual backbones. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 12894–12904. [Google Scholar]
- Wang, H.; Zhu, Y.; Green, B.; Adam, H.; Yuille, A.; Chen, L.-C. Axial-deeplab: Stand-alone axial-attention for panoptic segmentation. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2022; pp. 108–126. [Google Scholar]
- Ho, J.; Kalchbrenner, N.; Weissenborn, D.; Salimans, T. Axial attention in multidimensional transformers. arXiv 2019, arXiv:1912.12180. [Google Scholar]
- Child, R.; Gray, S.; Radford, A.; Sutskever, I. Generating long sequences with sparse transformers. arXiv 2019, arXiv:1904.10509. [Google Scholar]
- Hasan, A.M.; Sohel, F.; Diepeveen, D.; Laga, H.; Jones, M.G. A survey of deep learning techniques for weed detection from images. Comput. Electron. Agric. 2021, 184, 106067. [Google Scholar] [CrossRef]
- Hemming, J.; Rath, T. Image processing for plant determination using the Hough transform and clustering methods. Gartenbauwissenschaft 2002, 67, 1–10. [Google Scholar]
- Tian, L.; Slaughter, D.; Norris, R. Machine vision identification of tomato seedlings for automated weed control. Trans. ASAE 2000, 40, 1761–1768. [Google Scholar]
- Espejo-Garcia, B.; Mylonas, N.; Athanasakos, L.; Fountas, S.; Vasilakoglou, I. Towards weeds identification assistance through transfer learning. Comput. Electron. Agric. 2020, 171, 105306. [Google Scholar] [CrossRef]
- Jin, X.; Che, J.; Chen, Y. Weed identification using deep learning and image processing in vegetable plantation. IEEE Access 2021, 9, 10940–10950. [Google Scholar] [CrossRef]
- Wang, A.; Xu, Y.; Wei, X.; Cui, B. Semantic segmentation of crop and weed using an encoder-decoder network and image enhancement method under uncontrolled outdoor illumination. IEEE Access 2020, 8, 81724–81734. [Google Scholar] [CrossRef]
- Reedha, R.; Dericquebourg, E.; Canals, R.; Hafiane, A. Transformer Neural Network for Weed and Crop Classification of High Resolution UAV Images. Remote Sens. 2022, 14, 592. [Google Scholar] [CrossRef]
- Liang, J.; Wang, D.; Ling, X. Image Classification for Soybean and Weeds Based on ViT. J. Phys. Conf. Ser. 2021, 2002, 012068. [Google Scholar] [CrossRef]
- Thakur, P.S.; Khanna, P.; Sheorey, T.; Ojha, A. Explainable vision transformer enabled convolutional neural network for plant disease identification: PlantXViT. arXiv 2022, arXiv:2207.07919. [Google Scholar]
- Zhu, W.; Sun, J.; Wang, S.; Shen, J.; Yang, K.; Zhou, X. Identifying Field Crop Diseases Using Transformer-Embedded Convolutional Neural Network. Agriculture 2022, 12, 1083. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, L.; Jin, Y. AAFormer: A Multi-Modal Transformer Network for Aerial Agricultural Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 1705–1711. [Google Scholar]
- Li, X.; Li, S. Transformer Help CNN See Better: A Lightweight Hybrid Apple Disease Identification Model Based on Transformers. Agriculture 2022, 12, 884. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Yang, J.; Li, S. Transformer helps identify kiwifruit diseases in complex natural environments. Comput. Electron. Agric. 2022, 200, 107258. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the 7th International Conference on Learning Representations, ICLR, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Contributors, M. MMSegmentation. 2020. Available online: https://github.com/open-mmlab/mmsegmentation (accessed on 1 January 2020).
Name of Class | No. of Instances |
---|---|
Clover | 717 |
Common ragweed | 105 |
Crabgrass | 219 |
Dandelion | 205 |
Ground ivy | 70 |
Lambsquarter | 55 |
Pigweed | 92 |
Plantain | 451 |
Tall fescue | 175 |
Unknown weed | 93 |
Total | 2184 |
mIoU | mAcc | Param | |
---|---|---|---|
Swin Transformer | 65.41 | 72.73 | 29 M |
SegFormer | 65.74 | 75.18 | 3.7 M |
Segmenter | 59.24 | 69.31 | 6 M |
Class | Swin | SegFormer | Segmenter | |||
---|---|---|---|---|---|---|
IoU | Acc | IoU | Acc | IoU | Acc | |
Background | 90.63 | 97.47 | 91.74 | 95.56 | 90.13 | 95.13 |
Clover | 78.61 | 92.28 | 78.4 | 91.06 | 73.36 | 87.05 |
Common ragweed | 79.15 | 88.54 | 82.47 | 92.53 | 74.95 | 83.78 |
Crabgrass | 32.48 | 34.79 | 44.26 | 62.48 | 40.11 | 53.76 |
Dandelion | 73.09 | 82.29 | 68.91 | 76.26 | 63.64 | 71.79 |
Ground ivy | 86.65 | 89.05 | 90.42 | 97.43 | 90.75 | 97.69 |
Lambsquarter | 82.93 | 88.35 | 73.86 | 88.53 | 76.54 | 83.76 |
Pigweed | 32.45 | 36.81 | 36.1 | 46.28 | 22.91 | 35.29 |
Plantain | 68.71 | 72.77 | 63.79 | 67.57 | 63.0 | 68.97 |
Tall fescue | 55.64 | 72.53 | 55.41 | 82.34 | 51.28 | 80.12 |
Unknown weed | 39.12 | 45.14 | 37.8 | 42.54 | 4.9 | 5.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, K.; Afzaal, U.; Lee, J. Transformer-Based Weed Segmentation for Grass Management. Sensors 2023, 23, 65. https://doi.org/10.3390/s23010065
Jiang K, Afzaal U, Lee J. Transformer-Based Weed Segmentation for Grass Management. Sensors. 2023; 23(1):65. https://doi.org/10.3390/s23010065
Chicago/Turabian StyleJiang, Kan, Usman Afzaal, and Joonwhoan Lee. 2023. "Transformer-Based Weed Segmentation for Grass Management" Sensors 23, no. 1: 65. https://doi.org/10.3390/s23010065
APA StyleJiang, K., Afzaal, U., & Lee, J. (2023). Transformer-Based Weed Segmentation for Grass Management. Sensors, 23(1), 65. https://doi.org/10.3390/s23010065