Bio-Tailored Sensing at the Nanoscale: Biochemical Aspects and Applications
Abstract
:1. Introduction
2. Biosensors Based on Hybrid Biomolecules-Nanomaterials Composites
2.1. Electrochemical Biosensors
2.1.1. Aptamers-Based Electrochemical Biosensors
2.1.2. Proteins-Based Electrochemical Biosensors
2.2. Optical Biosensors
2.2.1. Aptamers-Based Optical Biosensors
2.2.2. Proteins-Based Optical Biosensors
3. Detection of the SARS-CoV-2 Virus: A Practical and Recent Paradigm
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Updike, S.J.; Hicks, G. The Enzyme Electrode. Nature 1967, 214, 986–988. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Pieters, B.J.G.E.; van Eldijk, M.B.; Nolte, R.J.M.; Mecinović, J. Natural supramolecular protein assemblies. Chem. Soc. Rev. 2016, 45, 24–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spicer, C.D.; Davis, B.G. Selective chemical protein modification. Nat. Commun. 2014, 5, 4740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shadish, J.A.; DeForest, C.A. Site-Selective Protein Modification: From Functionalized Proteins to Functional Biomaterials. Matter 2020, 2, 50–77. [Google Scholar] [CrossRef]
- Ardini, M.; Bellelli, A.; Williams, D.L.; Di Leandro, L.; Giansanti, F.; Cimini, A.; Ippoliti, R.; Angelucci, F. Taking Advantage of the Morpheein Behavior of Peroxiredoxin in Bionanotechnology. Bioconjugate Chem. 2021, 32, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Passaretti, P. Graphene Oxide and Biomolecules for the Production of Functional 3D Graphene-Based Materials. Front. Mol. Biosci. 2022, 9, 774097. [Google Scholar] [CrossRef]
- Lv, Z.; Zhu, Y.; Li, F. DNA Functional Nanomaterials for Controlled Delivery of Nucleic Acid-Based Drugs. Front. Bioeng. Biotechnol. 2021, 9, 720291. [Google Scholar] [CrossRef]
- Malik, P.; Gupta, R.; Malik, V.; Ameta, R.K. Emerging nanomaterials for improved biosensing. Meas. Sens. 2021, 16, 100050. [Google Scholar] [CrossRef]
- Park, H.; Kim, G.; Seo, Y.; Yoon, Y.; Min, J.; Park, C.; Lee, T. Improving Biosensors by the Use of Different Nanomaterials: Case Study with Microcystins as Target Analytes. Biosensors 2021, 11, 525. [Google Scholar] [CrossRef] [PubMed]
- Mansuriya, B.D.; Altintas, Z. Applications of Graphene Quantum Dots in Biomedical Sensors. Sensors 2020, 20, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, E.C.; Powell, J.M.; Clevinger, T.B.; Fairman, A.E.; Shukla, A. Advances in Biosensors and Diagnostic Technologies Using Nanostructures and Nanomaterials. Adv. Funct. Mater. 2021, 31, 2104126. [Google Scholar] [CrossRef]
- Cui, L.; Li, Y.; Lu, M.; Tang, B.; Zhang, C.Y. An ultrasensitive electrochemical biosensor for polynucleotide kinase assay based on gold nanoparticle-mediated lambda exonuclease cleavage-induced signal amplification. Biosens. Bioelectron. 2018, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wan, Y.; Qi, P.; Sun, Y.; Zhang, D.; Yu, L. Lectin functionalized ZnO nanoarrays as a 3D nano-biointerface for bacterial detection. Talanta 2017, 15, 600–606. [Google Scholar] [CrossRef]
- Krivitsky, V.; Hsiung, L.C.; Lichtenstein, A.; Brudnik, B.; Kantaev, R.; Elnathan, R.; Pevzner, A.; Khatchtourints, A.; Patolsky, F. Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: Nanowires do it all. Nano Lett. 2012, 12, 4748–4756. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, X.; Dai, X.; Feng, X.; Du, W.; Liu, B.F. Rhipsalis (Cactaceae)-like Hierarchical Structure Based Microfluidic Chip for Highly Efficient Isolation of Rare Cancer Cells. ACS Appl. Mater. Interfaces 2016, 14, 33457–33463. [Google Scholar] [CrossRef]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzym. Microb. Technol. 2022, 156, 110006. [Google Scholar] [CrossRef]
- Presnova, G.; Presnov, D.; Krupenin, V.; Grigorenko, V.; Trifonov, A.; Andreeva, I.; Ignatenko, O.; Egorov, A.; Rubtsova, M. Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens. Bioelectron. 2017, 15, 283–289. [Google Scholar] [CrossRef]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; et al. Recent progress and growth in biosensors technology: A critical review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- Ni, S.; Zhuo, Z.; Pan, Y.; Yu, Y.; Li, F.; Liu, J.; Wang, L.; Wu, X.; Li, D.; Wan, Y.; et al. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Appl. Mater. Interfaces 2021, 13, 9500–9519. [Google Scholar] [CrossRef]
- Di Leandro, L.; Giansanti, F.; Mei, S.; Ponziani, S.; Colasante, M.; Ardini, M.; Angelucci, F.; Pitari, G.; d’Angelo, M.; Cimini, A.; et al. Aptamer-Driven Toxin Gene Delivery in U87 Model Glioblastoma Cells. Front. Pharmacol. 2021, 15, 588306. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Gao, F.; Ma, J.; Ma, H.; Dong, G.; Sheng, C. Aptamer-PROTAC Conjugates (APCs) for Tumor-Specific Targeting in Breast Cancer. Angew. Chem. Int. Ed. 2021, 60, 23299–23305. [Google Scholar] [CrossRef]
- Zon, G. Recent advances in aptamer applications for analytical biochemistry. Anal. Biochem. 2022, 644, 113894. [Google Scholar] [CrossRef]
- Beitollahi, H.; Zaimbashi, R.; Mahani, M.T.; Tajik, S. A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles. Bioelectrochemistry 2020, 134, 107497. [Google Scholar] [CrossRef] [PubMed]
- Salek Maghsoudi, A.; Hassani, S.; Rezaei Akmal, M.; Ganjali, M.R.; Mirnia, K.; Norouzi, P.; Abdollahi, M. An Electrochemical Aptasensor Platform Based on Flower-Like Gold Microstructure-Modified Screen-Printed Carbon Electrode for Detection of Serpin A12 as a Type 2 Diabetes Biomarker. Int. J. Nanomed. 2020, 31, 2219–2230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartati, Y.W.; Komala, D.R.; Hendrati, D.; Gaffar, S.; Hardianto, A.; Sofiatin, Y.; Bahti, H.H. An aptasensor using ceria electrodeposited-screen-printed carbon electrode for detection of epithelial sodium channel protein as a hypertension biomarker. R. Soc. Open Sci. 2021, 8, 202040. [Google Scholar] [CrossRef]
- Xie, F.T.; Zhao, X.L.; Chi, K.N.; Yang, T.; Hu, R.; Yang, Y.H. Fe-MOFs as signal probes coupling with DNA tetrahedral nanostructures for construction of ratiometric electrochemical aptasensor. Anal. Chim. Acta 2020, 1135, 123–131. [Google Scholar] [CrossRef]
- Han, Z.; Tang, Z.; Jiang, K.; Huang, Q.; Meng, J.; Nie, D.; Zhao, Z. Dual-target electrochemical aptasensor based on co-reduced molybdenum disulfide and Au NPs (rMoS2-Au) for multiplex detection of mycotoxins. Biosens. Bioelectron. 2020, 150, 111894. [Google Scholar] [CrossRef]
- Roushani, M.; Rahmati, Z.; Farokhi, S.; Hoseinib, S.J.; Fath, R.H. The development of an electrochemical nanoaptasensor to sensing chloramphenicol using a nanocomposite consisting of graphene oxide functionalized with (3-Aminopropyl) triethoxysilane and silver nanoparticles. Mater. Sci. Eng. C 2020, 108, 110388. [Google Scholar] [CrossRef]
- Roushani, M.; Farokhi, S.; Shahdost-fard, F. Determination of BCM-7 based on an ultrasensitive aptasensor fabricated of gold nanoparticles and ZnS quantum dots. Mater. Today Commun. 2020, 23, 101066. [Google Scholar] [CrossRef]
- Roushani, M.; Ghanbarzadeh, M.; Shahdost-fard, F.; Sahraei, R.; Soheyli, E. AgNPs/QDs@GQDs nanocomposites developed as an ultrasensitive impedimetric aptasensor for ractopamine detection. Mater. Sci. Eng. C 2020, 108, 110507. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, H.; Shi, L.; Zheng, W.; Jing, X. Electroactive Cu2O nanoparticles and Ag nanoparticles driven ratiometric electrochemical aptasensor for prostate specific antigen detection. Sens. Actuators B Chem. 2020, 315, 128155. [Google Scholar] [CrossRef]
- Shi, X.; Sun, J.; Yao, Y.; Liu, H.; Huang, J.; Guo, Y.; Sun, X. Novel electrochemical aptasensor with dual signal amplification strategy for detection of acetamiprid. Sci. Total Environ. 2020, 705, 135905. [Google Scholar] [CrossRef] [PubMed]
- Farzadfard, A.; Shabani Shayehb, J.; Habibi-Rezaeia, M.; Omidib, M. Modification of reduced graphene/Au-aptamer to develop an electrochemical based aptasensor for measurement of glycated albumin. Talanta 2020, 211, 120722. [Google Scholar] [CrossRef]
- Yang, J.; Zhong, W.; Yu, Q.; Zou, J.; Gao, Y.; Liu, S.; Zhang, S.; Wang, X.; Lu, L. MXene-AuNP-Based Electrochemical Aptasensor for Ultra-Sensitive Detection of Chloramphenicol in Honey. Molecules 2022, 27, 1871. [Google Scholar] [CrossRef]
- Jahangiri-Dehaghani, F.; Zare, H.R.; Shekari, Z. Measurement of aflatoxin M1 in powder and pasteurized milk samples by using a label-free electrochemical aptasensor based on platinum nanoparticles loaded on Fe-based metal-organic frameworks. Food Chem. 2020, 25, 125820. [Google Scholar] [CrossRef]
- Song, Y.; Xu, M.; Liu, X.; Li, Z.; Wang, C.; Jia, Q.; Zhang, Z.; Du, M. A label-free enrofloxacin electrochemical aptasensor constructed by a semiconducting CoNi-based metal–organic framework (MOF). Electrochim. Acta 2021, 368, 137609. [Google Scholar] [CrossRef]
- Li, J.; Liu, L.; Ai, Y.; Liu, Y.; Sun, H.; Liang, Q. Self-Polymerized Dopamine-Decorated Au NPs and Coordinated with Fe-MOF as a Dual Binding Sites and Dual Signal-Amplifying Electrochemical Aptasensor for the Detection of CEA. ACS Appl. Mater. Interfaces 2020, 12, 5500–5510. [Google Scholar] [CrossRef]
- Fakude, C.T.; Arotiba, O.A.; Mabuba, N. Electrochemical aptasensing of cadmium (II) on a carbon black-gold nanoplatform. J. Electroanal. Chem. 2020, 858, 113796. [Google Scholar] [CrossRef]
- Meng, X.Z.; Gu, H.W.; Yi, H.C.; He, Y.Q.; Chen, Y.; Sun, W.Y. Sensitive detection of streptomycin in milk using a hybrid signal enhancement strategy of MOF-based bio-bar code and target recycling. Anal. Chim. Acta 2020, 1125, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bu, Y.; Jiang, F.; Dai, X.; Ao, J.-P. Fabrication of ultra-sensitive photoelectrochemical aptamer biosensor: Based on semiconductor/DNA interfacial multifunctional reconciliation via 2D-C3N4. Biosens Bioelectron. 2020, 150, 111903. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Shia, J.; Lia, Z.; Huang, X.; Zou, X.; Tan, W.; Zhang, X.; Hu, X.; Wang, X.; et al. Impedimetric aptasensor based on highly porous gold for sensitive detection T of acetamiprid in fruits and vegetables. Food Chem. 2020, 322, 126762. [Google Scholar] [CrossRef]
- Xu, Y.; Ding, L.; Wen, Z.; Zhang, M.; Jiang, D.; Guo, Y.; Ding, C.; Wang, K. Core-shell LaFeO3@g-C3N4 p-n heterostructure with improved photoelectrochemical performance for fabricating streptomycin aptasensor. Appl. Surf. Sci. 2020, 511, 145571. [Google Scholar] [CrossRef]
- Wadhwa, S.; John, A.T.; Nagabooshanam, S.; Mathur, A.; Narang, J. Graphene quantum dot-gold hybrid nanoparticles integrated aptasensor for ultra-sensitive detection of vitamin D3 towards point-of-care application. Appl. Surf. Sci. 2020, 521, 146427. [Google Scholar] [CrossRef]
- Tığ, G.A.; Pekyardımcı, Ş. An electrochemical sandwich-type aptasensor for determination of lipocalin- 2 based on graphene oxide/polymer composite and gold nanoparticles. Talanta 2020, 210, 120666. [Google Scholar] [CrossRef]
- Luo, Y.; Tan, X.; Young, D.J.; Chen, Q.; Huang, Y.; Feng, D.; Ai, C.; Mi, Y. A photoelectrochemical aptasensor for the sensitive detection of streptomycin based on a TiO2/BiOI/BiOBr heterostructure. Anal. Chim. Acta 2020, 1115, 33–40. [Google Scholar] [CrossRef]
- Fu, J.; Dong, H.; Zhao, Q.; Cheng, S.; Guo, Y.; Sun, X. Fabrication of refreshable aptasensor based on hydrophobic screen-printed carbon electrode interface. Sci. Total Environ. 2020, 712, 136410. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, H.; Zhang, H.; Chu, G.; Guo, Y.; Sun, X. Ultrasensitive electrochemiluminescence aptasensor for kanamycin detection based on silver nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. Sens. Actuators B 2020, 304, 127367. [Google Scholar] [CrossRef]
- Lu, M.; Cao, C.; Wang, F.; Liu, G. A polyethyleneimine reduced graphene oxide/gold nanocubes based electrochemical aptasensor for chloramphenicol detection using single-stranded DNA-binding protein. Mater. Des. 2021, 199, 109409. [Google Scholar] [CrossRef]
- He, B.; Wang, S. An electrochemical aptasensor based on PEI-C3N4/AuNWs for determination of chloramphenicol via exonuclease-assisted signal amplification. Microchim. Acta 2021, 188, 22. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wu, Y.; Chen, D.; Guo, Y.; Wang, X.; Sun, X. Sensitive dual-labeled electrochemical aptasensor for simultaneous detection of multi-antibiotics in milk. Int. J. Hydrog. Energy 2021, 46, 23301–23309. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, Y.; Zhan, D.; Lai, G. Homogeneous biorecognition reaction-induced assembly of DNA nanostructures for ultrasensitive electrochemical detection of kanamycin antibiotic. Anal. Chim. Acta 2021, 1154, 338317. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, Y.; Dong, H.; Liu, L.; Mao, G.; Zhang, Y.; Xu, M. Amplified Electrochemical Aptasensor for Sialic Acid Based on Carbon-Cloth-Supported Gold Nanodendrites and Functionalized Gold Nanoparticles. ChemElectroChem 2020, 7, 922–927. [Google Scholar] [CrossRef]
- Kuhlman, B.; Bradley, P. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 2019, 20, 681–697. [Google Scholar] [CrossRef]
- Ardini, M.; Giansanti, F.; Di Leandro, L.; Pitari, G.; Cimini, A.; Ottaviano, L.; Donarelli, M.; Santucci, S.; Angelucci, F.; Ippoliti, R. Metal-induced self-assembly of peroxiredoxin as a tool for sorting ultrasmall gold nanoparticles into one-dimensional clusters. Nanoscale 2014, 21, 8052–8061. [Google Scholar] [CrossRef]
- Ardini, M.; Golia, G.; Passaretti, P.; Cimini, A.; Pitari, G.; Giansanti, F.; Di Leandro, L.; Ottaviano, L.; Perrozzi, F.; Santucci, S.; et al. Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring. Nanoscale 2016, 28, 6739–6753. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, G.; Ardini, M.; Maccaferri, N.; Zambrana-Puyalto, X.; Panella, G.; Angelucci, F.; Ippoliti, R.; Garoli, D.; De Angelis, F. Bio-Assisted Tailored Synthesis of Plasmonic Silver Nanorings and Site-Selective Deposition on Graphene Arrays. Adv. Opt. Mater. 2020, 8, 1901583. [Google Scholar] [CrossRef]
- Ardini, M.; Huang, J.-A.; Caprettini, V.; De Angelis, F.; Fata, F.; Silvestri, I.; Cimini, A.; Giansanti, F.; Angelucci, F.; Ippoliti, R. A ring-shaped protein clusters gold nanoparticles acting as molecular scaffold for plasmonic surfaces. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129617. [Google Scholar] [CrossRef]
- Bittolo, B.S.; Rapi, M.; Coletta, R.; Morabito, A.; Valentini, L. Plasticised Regenerated Silk/Gold Nanorods Hybrids as Sealant and Bio-Piezoelectric Materials. Nanomaterials 2020, 10, 179. [Google Scholar] [CrossRef]
- Abbas, M.; Atiq, A.; Xing, R.; Yan, X. Silver-incorporating peptide and protein supramolecular nanomaterials for biomedical applications. J. Mater. Chem. B 2021, 9, 4444–4458. [Google Scholar] [CrossRef] [PubMed]
- Hartati, Y.W.; Gaffar, S.; Alfiani, D.; Pratomo, U.; Sofiatin, Y.; Subroto, T. A voltammetric immunosensor based on gold nanoparticle—Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension. Sens. Bio-Sens. Res. 2020, 29, 100343. [Google Scholar] [CrossRef]
- Hartati, Y.W.; Letelay, L.K.; Gaffar, S.; Wyantuti, S.; Bahti, H.H. Cerium oxide-monoclonal antibody bioconjugate for electrochemical immunosensing of HER2 as a breast cancer biomarker. Sens. Bio-Sens. Res. 2020, 27, 100316. [Google Scholar] [CrossRef]
- Li, L.; Wei, Y.; Zhang, S.; Chen, X.; Shao, T.; Feng, D. Electrochemical immunosensor based on metal ions functionalized CNSs@Au NPs nanocomposites as signal amplifier for simultaneous detection of triple tumor markers. J. Electroanal. Chem. 2021, 880, 114882. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, J.; Zhao, J.; Zhu, K.; Xu, Q.; Chen, H. Natural receptor-based competitive immunoelectrochemical assay for ultra-sensitive detection of Siglec 15. Biosens. Bioelectron. 2020, 151, 111959. [Google Scholar] [CrossRef] [PubMed]
- Öndeş, B.; Akpınar, F.; Uygun, M.; Muti, M.; Uygun, D.A. High stability potentiometric urea biosensor based on enzyme attached nanoparticles. Microchem. J. 2021, 160, 105667. [Google Scholar] [CrossRef]
- Khristunova, E.; Barek, J.; Kratochvil, B.; Korotkova, E.; Dorozhko, E.; Vyskocil, V. Electrochemical immunoassay for the detection of antibodies to tick-borne encephalitis virus by using various types of bioconjugates based on silver nanoparticles. Bioelectrochemistry 2020, 135, 107576. [Google Scholar] [CrossRef]
- Shen, H.; Wang, C.; Ren, C.; Zhang, G.; Zhang, Y.; Li, J.; Hua, X.; Yang, Z. A streptavidin-functionalized tin disulfide nanoflake-based ultrasensitive electrochemical immunosensor for the detection of tumor markers. New J. Chem. 2020, 44, 6010–6014. [Google Scholar] [CrossRef]
- Chanarsa, S.; Jakmunee, J.; Ounnunkad, K. A Bifunctional Nanosilver-Reduced Graphene Oxide Nanocomposite for Label-Free Electrochemical Immunosensing. Front. Chem. 2021, 9, 631571. [Google Scholar] [CrossRef]
- Hartati, Y.W.; Yusup, S.F.; Fitrilawati, F.; Wyantuti, S.; Sofiatin, Y.; Gaffar, S. A voltammetric epithelial sodium channels immunosensor using screen-printed carbon electrode modified with reduced graphene oxide. Curr. Chem. Lett. 2020, 9, 151–160. [Google Scholar] [CrossRef]
- Wei, S.; Xiao, H.; Cao, L.; Chen, Z. A Label-Free Immunosensor Based on Graphene Oxide/Fe3O4/Prussian Blue Nanocomposites for the Electrochemical Determination of HBsAg. Biosensors 2020, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Cheng, Y.; Chen, Y.; Xiao, H.; Sui, Y.; Xie, Q.; Liu, R.; Yang, X. Dual-signal sandwich-type electrochemical immunoassay of galectin-3 using methylene blue and gold nanoparticles biolabels. J. Electroanal. Chem. 2020, 861, 113952. [Google Scholar] [CrossRef]
- Hong, S.P.; Mohd-Naim, N.F.; Keasberry, N.A.; Ahmed, M.U. Electrochemical Detection of β-lactoglobulin Allergen Using Titanium Dioxide/Carbon Nanochips/Gold Nanocomposite-based Biosensor. Electroanalysis 2021, 33, 684–691. [Google Scholar] [CrossRef]
- Choosang, J.; Khumngern, S.; Thavarungkul, P.; Kanatharana, P.; Numnuam, A. An ultrasensitive label-free electrochemical immunosensor based on 3D porous chitosan–graphene–ionic liquid–ferrocene nanocomposite cryogel decorated with gold nanoparticles for prostate-specific antigen. Talanta 2021, 224, 121787. [Google Scholar] [CrossRef]
- Kushwaha, C.S.; Singh, P.; Abbas, N.S.; Shukla, S.K. Self-activating zinc oxide encapsulated polyaniline-grafted chitosan composite for potentiometric urea sensor. J. Mater. Sci. Mater. Electron. 2020, 31, 11887–11896. [Google Scholar] [CrossRef]
- Zhao, C.; Ma, C.; Wu, M.; Li, W.; Song, Y.; Hong, C.; Qiao, X. A novel electrochemical immunosensor based on CoS2 for early screening of tumor marker carcinoembryonic antigen. New J. Chem. 2020, 44, 3524–3532. [Google Scholar] [CrossRef]
- Lee, J.Y.; Cho, D.-G.; Cho, S.-P.; Choi, J.-H.; Sung, S.J.; Hong, S.; Yu, W.-R. Semiconducting carbon nanotube fibers for electrochemical biosensor platforms. Mater. Des. 2020, 192, 108740. [Google Scholar] [CrossRef]
- Ganbat, K.; Pan, D.; Chen, K.; Ning, Z.; Xing, L.; Zhang, Y.; Shen, Y. One-pot electrografting preparation of bifunctionalized carbon nanotubes for sensitive electrochemical immunosensing. J. Electroanal. Chem. 2020, 860, 113906. [Google Scholar] [CrossRef]
- Assari, P.; Rafati, A.A.; Feizollahi, A.; Joghani, R.A. Fabrication of a sensitive label free electrochemical immunosensor for detection of prostate specific antigen using functionalized multi-walled carbon nanotubes/polyaniline/AuNPs. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 115, 111066. [Google Scholar] [CrossRef]
- Ma, L.; Yue, Z.; Huo, G.; Zhang, S.; Zhu, B.; Zhang, S.; Huang, W. 3D Hydrogen Titanate Nanotubes on Ti Foil: A Carrier for Enzymatic Glucose Biosensor. Sensors 2020, 20, 1024. [Google Scholar] [CrossRef]
- Ma, E.; Wang, P.; Yang, Q.; Yu, H.; Pei, F.; Zheng, Y.; Liu, Q.; Dong, Y.; Li, Y. Electrochemical Immunosensors for Sensitive Detection of Neuron-Specific Enolase Based on Small-Size Trimetallic Au@Pd^Pt Nanocubes Functionalized on Ultrathin MnO2 Nanosheets as Signal Labels. ACS Biomater. Sci. Eng. 2020, 6, 1418–1427. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xia, X.; Meng, S.; Ma, Y.; Yang, T.; Yang, Y.; Hu, R. An electrochemical immunosensor coupling a bamboo-like carbon nanostructure substrate with toluidine blue-functionalized Cu(II)-MOFs as signal probes for a C-reactive protein assay. RSC Adv. 2021, 11, 6699. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Li, Z.; Li, G.; Ju, H. A DNA dendrimer amplified electrochemical immunosensing method for highly sensitive detection of prostate specific antigen. Anal. Chim. Acta 2021, 1186, 339083. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, T.; Hu, Y.; Wang, X.; Wu, Y. A label-free and carbon dots based fluorescent aptasensor for the detection of kanamycin in milk. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 226, 117651. [Google Scholar] [CrossRef]
- Su, L.; Wang, S.; Wang, L.; Yan, Z.; Yi, H.; Zhang, D.; Shen, G.; Ma, Y. Fluorescent aptasensor for carbendazim detection in aqueous samples based on gold nanoparticles quenching Rhodamine B. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 15, 117511. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, X.; Kou, Q.; Sun, Q.; Wang, Y.; Wu, P.; Yang, L.; Tang, J.; Le, T. An Ultrasensitive Label-Free Fluorescent Aptasensor Platform for Detection of Sulfamethazine. Int. J. Nanomed. 2021, 16, 2751–2759. [Google Scholar] [CrossRef]
- Chen, X.-X.; Lin, Z.-Z.; Hong, C.-Y.; Yao, Q.-H.; Huang, Z.-Y. A dichromatic label-free aptasensor for sulfadimethoxine detection in fish and water based on AuNPs color and fluorescent dyeing of double-stranded DNA with SYBR Green I. Food Chem. 2020, 309, 125712. [Google Scholar] [CrossRef]
- Ren, L.; Xu, P.; Zhang, P.; Qin, Z.; Zhang, Y.; Jiang, L. Label-free fluorescence aptasensor based on AuNPs and CQDs for the detection of ATP. AIP Adv. 2021, 11, 015316. [Google Scholar] [CrossRef]
- Yu, X.-A.; Hu, Y.; Zhang, Y.; Zhang, R.; Bai, X.; Gu, L.; Gao, H.; Li, R.; Tian, J.; Yu, B.-Y. Integrating the Polydopamine Nanosphere/Aptamers Nanoplatform with a DNase-I-Assisted Recycling Amplification Strategy for Simultaneous Detection of MMP-9 and MMP-2 during Renal Interstitial Fibrosis. ACS Sens. 2020, 5, 1119–1125. [Google Scholar] [CrossRef]
- Xue, N.; Wu, S.; Li, Z.; Miao, X. Ultrasensitive and label-free detection of ATP by using gold nanorods coupled with enzyme assisted target recycling amplification. Anal. Chim. Acta 2020, 1104, 117–124. [Google Scholar] [CrossRef]
- Pratap, D.; Soni, S. Review on the Optical Properties of Nanoparticle Aggregates Towards the Therapeutic Applications. Plasmonics 2021, 16, 1495–1513. [Google Scholar] [CrossRef]
- Soongsong, J.; Lerdsria, J.; Jakmunee, J. A facile colorimetric aptasensor for low-cost chlorpyrifos detection utilizing gold nanoparticle aggregation induced by polyethyleneimine. Analyst 2021, 146, 4848. [Google Scholar] [CrossRef] [PubMed]
- Shayesteh, O.H.; Ghavami, R. A novel label-free colorimetric aptasensor for sensitive determination of PSA biomarker using gold nanoparticles and a cationic polymer in human serum. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 226, 117644. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Sha, J.; Li, Z.; Wang, W.; Zhang, H. High affinity truncated aptamers for ultra-sensitive colorimetric detection of bisphenol A with label-free aptasensor. Food Chem. 2020, 317, 126459. [Google Scholar] [CrossRef]
- Wu, Y.-Y.; Huang, P.; Wu, F.-Y. A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics. Food Chem. 2020, 30, 125377. [Google Scholar] [CrossRef]
- Kim, H.-K.; Kim, H.-R.; Yoon, S.-J.; Lee, K.-B.; Kim, J.; Kim, B.-C. Colorimetric Aptasensor for Detecting Bacillus carboniphilus Using Aptamer Isolated with a Non-SELEX-Based Method. Chemosensors 2021, 9, 121. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, Y.; Yao, S.; Xu, M.; Yin, L.; Zhai, X.; Teng, X. A colorimetric aptasensor for the simple and rapid detection of human papillomavirus type 16 L1 proteins. Analyst 2021, 146, 2712. [Google Scholar] [CrossRef]
- Xu, C.; Lin, M.; Wang, T.; Yao, Z.; Zhang, W.; Feng, X. Colorimetric aptasensor for on-site detection of acetamiprid with hybridization chain reaction-assisted amplification and smartphone readout strategy. Food Control 2022, 137, 108934. [Google Scholar] [CrossRef]
- Abedalwafa, M.A.; Tang, Z.; Qiao, Y.; Mei, Q.; Yang, G.; Li, Y.; Wang, L. An aptasensor strip-based colorimetric determination method for kanamycin using cellulose acetate nanofibers decorated DNA-gold nanoparticle bioconjugates. Microchim. Acta 2020, 187, 360. [Google Scholar] [CrossRef]
- Birader, K.; Kumar, P.; Tammineni, Y.; Barla, J.A.; Reddy, S.; Suman, P. Colorimetric aptasensor for on-site detection of oxytetracycline antibiotic in milk. Food Chem. 2021, 356, 129659. [Google Scholar] [CrossRef]
- Ramalingam, S.; Collier, C.M.; Singh, A. A Paper-Based Colorimetric Aptasensor for the Detection of Gentamicin. Biosensors 2021, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Chinnappan, R.; Rahamn, A.A.; AlZabn, R.; Kamath, S.; Lopata, A.L.; Abu-Salah, K.M.; Zourob, M. Aptameric biosensor for the sensitive detection of major shrimp allergen, tropomyosin. Food Chem. 2020, 1, 126133. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, J.; Ge, Y.; Shao, Y. Two-dimensional nanomaterials for Förster resonance energy transfer–based sensing applications. Nanophotonics 2020, 9, 1855–1875. [Google Scholar] [CrossRef]
- He, Y.; Tian, F.; Zhou, J.; Zhao, Q.; Fu, R.; Jiao, B. Colorimetric aptasensor for ochratoxin A detection based on enzyme-induced gold nanoparticle aggregation. J. Hazard. Mater. 2020, 15, 121758. [Google Scholar] [CrossRef]
- Fan, K.; Yang, R.; Zhao, Y.; Zang, C.; Miao, X.; Qu, B.; Lu, L. A fluorescent aptasensor for sensitive detection of isocarbophos based on AT-rich three-way junctions DNA templated copper nanoparticles and Fe3O4@GO. Sens. Actuators B Chem. 2020, 321, 128515. [Google Scholar] [CrossRef]
- Liu, S.; Bai, J.; Huo, Y.; Ning, B.; Peng, Y.; Li, S.; Han, D.; Kang, W.; Gao, Z. A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol. Biosens. Bioelectron. 2020, 149, 111801. [Google Scholar] [CrossRef]
- García-Rubio, D.L.; de la Mora, M.B.; Cerecedo, D.; Saniger Blesa, J.M.; Villagràn-Muniz, M. An optical-based biosensor of the epithelial sodium channel as a tool for diagnosing hypertension. Biosens. Bioelectron. 2020, 157, 112151. [Google Scholar] [CrossRef]
- Acunzo, A.; Scardapane, E.; De Luca, M.; Marra, D.; Velotta, R.; Minopoli, A. Plasmonic Nanomaterials for Colorimetric Biosensing: A Review. Chemosensors 2022, 10, 136. [Google Scholar] [CrossRef]
- Campanile, R.; Elia, V.C.; Minopoli, A.; Ud Din Babar, Z.; di Girolamo, R.; Morone, A.; Sakač, N.; Velotta, R.; Della Ventura, B.; Iannotti, V. Magnetic micromixing for highly sensitive detection of glyphosate in tap water by colorimetric immunosensor. Talanta 2023, 253, 123937. [Google Scholar] [CrossRef]
- Karami, P.; Khoshsafar, H.; Johari-Ahar, M.; Arduini, F.; Afkhami, A.; Bagheri, H. Colorimetric immunosensor for determination of prostate specific antigen using surface plasmon resonance band of colloidal triangular shape gold nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 222, 117218. [Google Scholar] [CrossRef]
- Bai, X.; Yu, X.-A.; Zhang, R.; Zhang, Y.; Hu, Y.; Zhao, L.; Zhang, M.; Tian, J.; Yu, B.-Y. Protein/Gold Nanoparticle-Based Sensors for Monitoring the Progression of Adriamycin Nephropathy. ACS Appl. Nano Mater. 2021, 4, 4919–4929. [Google Scholar] [CrossRef]
- Kausaite-Minkstimiene, A.; Popov, A.; Ramanaviciene, A. Surface Plasmon Resonance Immunosensor with Antibody-Functionalized Magnetoplasmonic Nanoparticles for Ultrasensitive Quantification of the CD5 Biomarker. ACS Appl. Mater. Interfaces 2022, 14, 20720–20728. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Riaño, E.J.; Avila-Huerta, M.D.; Mancera-Zapata, D.L.; Morales-Narváez, E. Microwell plates coated with graphene oxide enable advantageous real-time immunosensing platform. Biosens. Bioelectron. 2020, 165, 112319. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, J.; Yang, W.; Han, D.; Yao, N.; Zhao, H.; Chu, X.; Liang, X.; Bi, C.; Wang, C.; et al. Fluorescent immunosensor based on fluorescence resonance energy transfer between CdSe/ZnS quantum dots and Au nanorods for PRRSV detection. Prog. Nat. Sci. Mater. Int. 2022, 32, 157–162. [Google Scholar] [CrossRef]
- Pacheco, M.; de la Asunciòn-Nadal, V.; Jurado-Sànchez, B.; Escarpa, A. Engineering Janus micromotors with WS2 and affinity peptides for turn-on fluorescent sensing of bacterial lipopolysaccharides. Biosens. Bioelectron. 2020, 165, 112286. [Google Scholar] [CrossRef]
- Li, J.; Fan, J.; Wu, R.; Li, N.; Lv, Y.; Shen, H.; Li, L.S. Biomolecular Surface Functionalization and Stabilization Method to Fabricate Quantum Dots Nanobeads for Accurate Biosensing Detection. Langmuir 2022, 38, 4969–4978. [Google Scholar] [CrossRef]
- Song, Y.; Sun, J.; Zhao, S.; Gao, F.; Yuan, H.; Sun, B.; Wang, B.; Wang, Y. Based lateral flow immunosensor for ultrasensitive and selective surface-enhanced Raman spectroscopy stroke biomarkers detection. Appl. Sur. Sci. 2022, 571, 151153. [Google Scholar] [CrossRef]
- Ramanaviciene, A.; Popov, A.; Baliunaite, E.; Brasiunas, B.; Kausaite-Minkstimiene, A.; Tamer, U.; Kirdaite, G.; Bernotiene, E.; Mobasheri, A. Magneto-Immunoassay for the Detection and Quantification of Human Growth Hormone. Biosensors 2022, 12, 65. [Google Scholar] [CrossRef]
- Cid-Barrio, L.; Ruiz Encinar, J.; Costa-Fernández, J.M. Catalytic Gold Deposition for Ultrasensitive Optical Immunosensing of Prostate Specific Antigen. Sensors 2020, 20, 5287. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts (accessed on 20 October 2022).
- Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 20 October 2022).
- Shao, W.; Shurin, M.R.; Wheeler, S.E.; He, X.; Star, A. Rapid Detection of SARS-CoV-2 Antigens Using High-Purity Semiconducting Single-Walled Carbon Nanotube-Based Field-Effect Transistors. ACS Appl. Mater. Interfaces 2021, 13, 10321–10327. [Google Scholar] [CrossRef]
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.-H.; Choi, M.; Ku, K.B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Li, X.; Pan, J.; Zhang, Y.; Zhang, L.; Wang, C.; Yan, X.; Liu, X.; Lu, G. Ultrasensitive detection of SARS-CoV-2 spike protein in untreated saliva using SERS-based biosensor. Biosens. Bioelectron. 2021, 15, 113421. [Google Scholar] [CrossRef] [PubMed]
- Hadi, M.U.; Khurshid, M. SARS-CoV-2 Detection Using Optical Fiber Based Sensor Method. Sensors 2022, 22, 751. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.; Dutta, N.; Dutta, G. Aptamer-based biosensors and their implications in COVID-19 diagnosis. Anal. Methods 2021, 13, 5400. [Google Scholar] [CrossRef] [PubMed]
- Mengist, H.M.; Kombe Kombe, A.J.; Mekonnen, D.; Abebaw, A.; Getachew, M.; Jin, T. Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Semin. Immunol. 2021, 55, 101533. [Google Scholar] [CrossRef]
- Chang, C.-K.; Hou, M.-H.; Chang, C.-F.; Hsiao, C.-D.; Huang, T.-H. The SARS coronavirus nucleocapsid protein—Forms and functions. Antivir. Res. 2014, 103, 39–50. [Google Scholar] [CrossRef]
- Available online: https://www.grandviewresearch.com/industry-analysis/biosensors-market (accessed on 22 October 2022).
- Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en#thebenefitsoftheeuropeangreendeal (accessed on 22 October 2022).
- Available online: https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en (accessed on 22 October 2022).
Electrode | Main Components | Target | LOD; Range | Reference |
---|---|---|---|---|
Glassy carbon | Aptamers-functionalized AuNPs | Homocysteine in serum and urine | 0.01 μM; 0.05–20.0 μM | [25] |
Screen-printed carbon | Aptamers-functionalized flower-like Au microstructures | Serpin in plasma | 0.031 ng mL−1; 0.039–10 ng mL−1 | [26] |
Screen-printed Au | Aptamers-functionalized CeO2NPs | Epithelial sodium channel in urine | 0.012 ng mL−1; 0.05–3.0 ng mL−1 | [27] |
Glassy carbon | DNA nonotetrahedrons-functionalized AuNPs-IL-MoS2, aptamer-functionalized AuNPs-Fe-MIL-88 MOFs | Thrombin in serum | 56 fM; 0.298–29.8 pM | [28] |
Glassy carbon | Aptamers-functionalized reduced MoS2-AuNPs | Zearalenone and fumonisin B1 in food | 5 × 10−4 ng mL−1; 1 × 10−3–10 ng mL−1 (zearalenone) and 1 × 10−3–1 × 102 ng mL−1 (fumonisin B1) | [29] |
Glassy carbon | Aptamers-functionalized (3-aminopropyl)triethoxysilane-modified GO-AgNPs | Chloramphenicol in food | 3.3 pM; 10 pM–0.2 μM | [30] |
Glassy carbon | Aptamers-functionalized thiourea capped-ZnSQDs-AuNPs | β-casomorphin 7 in urine | 350 aM; 1 fM–0.6 μM | [31] |
Glassy carbon | Aptamers-functionalized core-shell Cu-In-S-ZnSQDs-AgNPs-GQDs | Ractopamine in urine and serum | 330 aM; 1 fM–901.4 nM | [32] |
Magnetic glassy carbon | Aptamers-functionalized magnetic reduced GO-Fe3O4-Cu2O nanosheets and Ag-resorcinol-formaldehyde NPs-AgNDs | Prostate specific antigen in serum | 6.2 pg mL−1; 0.01–100 ng mL−1 | [33] |
Glassy carbon | Aptamers-functionalized reduced GO-AgNPs and prussian blue-AuNPs | Acetamiprid in food | 0.30 pM; 1 pM–1 μM | [34] |
Glassy carbon | Aptamers-functionalized reduced GO-AuNPs | Glycated albumin | 0.07 μg mL−1; 2–10 μg mL−1 | [35] |
Glassy carbon | Aptamers-functionalized MXene-AuNPs | Chloramphenicol in food | 0.03 pM; 0.0001–10 nM | [36] |
Glassy carbon | Aptamers-functionalized PtNPs-MIL-101(Fe) MOFs | Aflatoxin M1 in food | 2 × 10−3 ng mL−1; 1 × 10−2–80 ng mL−1 | [37] |
Au | Aptamers-functionalized CoNi-MOFs | Enrofloxacin in food, water and serum | 0.2 fg mL−1; 0.001–1 pg mL−1 | [38] |
Glassy carbon | Aptamers-functionalized AuNPs-Fe3+-catechol MOFs | Carcinoembryonic antigen in serum | 0.33 fg mL−1; 1 fg mL−1–1 μg mL−1 | [39] |
Screen-printed carbon | Aptamers-functionalized carbon-black NPs-AuNPs | Cd(II) ions in water | 0.14 ppb; 1–50 ppb | [40] |
Screen-printed carbon | Aptamers-functionalized AuNPs-UiO-66-NH2 MOFs assisted by exonuclease | Streptomycin in food | 2.6 pg mL−1; 0.005–150 ng mL−1 | [41] |
Fluorine-doped tin oxide | Aptamers-functionalized BiVO4-2D-C3N4 photoanode with II type heterojunction | Microcystin-LR in water | 4.191 × 10−8 μg L−1; 5 × 10−7 μg L−1–10 μg L−1 | [42] |
Au | Aptamers-functionalized highly porous Au nanostructures | Acetamiprid in food | 0.34 nmol L−1; 0.5–300 nmol L−1 | [43] |
Indium tin oxide | Aptamers-functionalized core-shell LaFeO3-g-C3N4 heterostructures | Streptomycin in food | 0.0033 nM; 0.01–10000 nM | [44] |
Au | Aptamers-functionalized GQDs-AuNPs composites | Vitamin D in serum | 0.7 nM; 1–500 nM | [45] |
Screen printed graphite | Aptamers-functionalized poly-3-amino-1,2,4-triazole-5-thiol-GO-AuNPs and secondary aptamer probes | Lipocalin-2 in blood serum | 0.3 ng mL−1; 1–1000 ng mL−1 | [46] |
Indium tin oxide electrodes | Aptamers-functionalized TiO2-BiOI-BiOBr visible light photosensitive composite | Streptomycin food and blood serum | 0.04 nM; 0.05–150 nM | [47] |
Screen-printed carbon | Aptamers-functionalized magnetic GO-Fe3O4 | Organophosphorus pesticides in food | N.D. | [48] |
Pt | Aptamers-functionalized AgNPs and luminol-hydrogen peroxide | Kanamycin in food | 0.06 ng mL−1; 0.5–100 ng mL−1 | [49] |
Au | Aptamers-functionalized polyethyleneimine-coated reduced GO-AuNCs and single-stranded DNA-binding protein | Chloramphenicol in food | 2.08 pmol·L−1; 5 pmol·L−1–1 μmol·L−1 | [50] |
Au | Polyethyleneimine-graphite-like carbon nitride/AuNWs functionalized with SH-aptamers | Chloramphenicol in food | 2.96 × 10−9 μM; 1 × 10−7–1 μM | [51] |
Au | Aptamers-functionalized AuNSs conjugated to CdSQDs and PdSQDs | Kanamycin and tobramycin in serum | 0.12 nM (kanamycin) and 0.49 nM (tobramycin); 1–4 × 102 nM (kanamycin) and 1–1 × 104 nM (tobramycin) | [52] |
Au | DNA nanostructures and horseradish peroxidase-functionalized AuNPs assisted by exonuclease | Kanamycin in food | 9.1 fg mL−1; 0.05 pg mL−1–10 ng mL−1 | [53] |
Carbon | Aptamer-coated Au nanodendrites and 4-mercaptophenylboric acid-thionine-functionalized AuNPs | Sialic acid in serum | 60 nM; 0.1–440 μM | [54] |
Electrode | Main Components | Target | LOD; Range | Reference |
---|---|---|---|---|
Screen-printed carbon | AuNPs-antibodies | Epithelial sodium channel in urine | 2.8 × 10−1 ng mL−1; 9.375 × 10−2–1.0 ng mL−1 | [62] |
Screen-printed carbon | CeO2NPs-antibodies | Herceptin-2 in serum | 34.9 pg mL−1; 0.001–20.0 ng mL−1 | [63] |
Glassy carbon | Divalent metal ions-functionalized AuNPs-carbon NSs-antibodies | Prostate specific antigen, carcinoembryonic antigen and α-fetoprotein in serum | 3.6 pg mL−1 (prostate specific antigen), 3.0 pg mL−1 (carcinoembryonic antigen) and 2.6 pg mL−1 (α-fetoprotein); 0.01–100 ng mL−1 (prostate specific antigen), 0.01–80 ng mL−1 (carcinoembryonic antigen and α-fetoprotein) | [64] |
Au | Magnetic Fe3O4NPs-antibodies | Siglec 15 protein in serum | 0.82 pg mL−1; 1 pg mL−1–100 ng mL−1 | [65] |
Screen-printed carbon | Nafion-embedded poly(2-hydroxyethyl methacrylate-glycidyl methacrylate)NPs-urease | Urea in serum | 0.77 μM; 0.01–500 mM | [66] |
Graphite | AgNPs-antibodies | Tick-borne encephalitis virus in serum | 90 IU mL−1; 100–1600 IU mL−1 | [67] |
Glassy carbon | Antibodies-functionalized SnS2 nanoflakes-chitosan | Carcinoembryonic antigen in serum | 5 pg mL−1; 0.006–3.0 ng mL−1 | [68] |
Screen-printed carbon | AgNPs-reduced GO-antibodies | Immunoglobulin G in serum | 0.00086 ng mL−1; 0.001–0.05 and 0.05–50 ng mL−1 | [69] |
Screen-printed carbon | GO-antibodies | Epithelial sodium channels in urine | 0.198 ng mL−1; 0.01–1.5 ng mL−1 | [70] |
Screen-printed | GO-Fe3O4NPs-Prussian blue-AuNPs-antibodies | Hepatitis B surface antibody in serum | 0.166 pg mL−1; 0.5 pg mL−1–200 ng mL−1 | [71] |
Glassy carbon | Carboxyl G functionalized with mesoporous silica NPs-Methylene blue-AuNPs-antibodies | Galectin-3 in serum | 2.0 fg mL−1; 50 fg mL−1–500 ng mL−1 | [72] |
Au | Carbon nanochips-embedded Au colloids-TiO2NPs-chitosan composites | β-lactoglobulin in food | 0.01 pg mL−1; 0.01–500 pg mL−1 | [73] |
Screen-printed carbon | Chitosan-G-ionic liquid-ferrocene porous cryogel decorated with AuNPs-antibodies | Prostate-specific antigen in serum | 4.8 × 10−8 ng mL−1; 1.0 × 10−7–1.0 × 10−1 ng mL−1 | [74] |
Indium tin oxide | Urease-functionalized ZnONPs-polyaniline-chitosan | Urea in serum | 29.84 ppm; 20–500 ppm | [75] |
Glassy carbon | Sandwich-like carbon NTs-CoS2-polyalanine-antibodies-horseradish peroxidase and AuNPs-antibodies | Carcinoembryonic antigen in serum | 0.33 pg mL−1; 0.001–40 ng mL−1 | [76] |
Silicon oxide | Microfibers of single-walled carbon NTs-glucose oxidase | Glucose | N.D. | [77] |
Glassy carbon | Vinyl ferrocene- and N-hydroxy succinimide acrylate-bifunctionalized carbon NTs conjugated with antibodies | α-fetoprotein in serum | 1.14 ng·mL−1; 10 ng·mL−1–50 μg·mL−1 | [78] |
Glassy carbon | Carbon NTs-polyalanine functionalized with AuNPs-antibodies | Prostate-specific antigen in serum | 0.5 pg·mL−1; 1.66 ag·mL−1–1.3 ng·mL−1 | [79] |
Titanium foil | Porous hydrogen titanate NTs-glucose oxidases | Glucose | 59 μM; 1–10 mM | [80] |
Glassy carbon | Antibodies-functionalzied sandwich-like AuNPs-embedded MOFs and MnO2 nanosheets-trimetallic Au-Pt-Pd nanocubes | Neuron-specific enolase in serum | 4.17 fg mL−1; 10 fg mL−1–100 ng mL−1 | [81] |
Glassy carbon | Antibodies-functionalized bamboo-like sandwich-like carbon nanostructure-toluidine blue-functionalized copper-based MOFs | C-reactive protein in serum | 166.7 pg mL−1; 0.5–200 ng mL−1 | [82] |
Glassy carbon | Sandwich-like antibodies-conjugated DNA dendrimers on antibodies-functionalized electrodes | Prostate-specific antigen in serum | 0.26 pg mL−1; 1 pg mL−1–10 ng mL−1 | [83] |
Signal Detected | Main Components | Target | LOD; Range | Reference |
---|---|---|---|---|
Fluorescence | Aptamers-coated AuNPs, carbon QDs | Kanamycin in food | 18 nM; 0.04–0.24 μM | [84] |
Fluorescence | Aptamers-coated AuNPs, Rhodamine B | Carbendazim in water | 2.33 nM; 2.33–800 nM | [85] |
Fluorescence | Aptamers-coated AuNPs, Rhodamine B | Sulfamethazine in water and food | 0.82 ng mL−1; 1.25–40 ng mL−1 | [86] |
Fluorescence | Aptamers-coated AuNPs, SYBR Green I-functionalized cDNA | Suplhadimetoxine in water and food | 3.41 ng mL−1 (water) and 4.41 ng L−1 (food); 2 ng mL−1–300 ng mL−1 | [87] |
Fluorescence | Aptamers-functionalized AuNPs-carbon QDs | Adenosine triphosphate | 20 μM: 20–280 μM | [88] |
Fluorescence | Fluorescent aptamers-coated polydopamine NSs, DNase-I enzyme | Metalloproteinase-9 and -2 in urine and tissue homogenate | 9.6 pg mL−1 (metalloproteinase-9) and 25.6 pg mL−1 (metalloproteinase-2); 24–600 pg mL−1 (metalloproteinase-9) and 64–1600 pg mL−1 (metalloproteinase-2) | [89] |
Fluorescence | AuNRs coated with Ag nanoclusters-conjugated aptamers, exonuclease enzyme | Adenosine triphosphate in serum | 26 pM; 50 pM–1.0 nM | [90] |
Color | Polyethyleneimine-coated AuNPs, unfunctionalized aptamers | Chlorpyrifos in water and food | 7.4 ng mL−1; 20–300 ng mL−1 | [92] |
Color | AuNPs coated with unfunctionalized polyA aptamers | Prostate specific antigen in serum | 20 pg mL−1; 0.1–100 ng mL−1 | [93] |
Color | Unfunctionalized truncated aptamers-coated AuNPs | Bisphenol A in food and water | 7.60 pM (38-mer) and 14.41 pM (12-mer); 20–100 pM | [94] |
Color | Unfunctionalized aptamers-coated AuNPs | Chloramphenicol and tetracycline in food | 32.9 nM (tetracycline) and 7.0 nM (chloramphenicol); 0.05–3.0 μM (tetracycline) and 0.05–1.8 μM (chloramphenicol) | [95] |
Color | Unfunctionalized aptamers-coated AuNPs | Bacillus carboniphilus on biofilms | 5 × 103 CFU mL−1; 104–107 CFU mL−1 | [96] |
Color | Unfunctionalized RNA aptamers-coated AuNPs | Human papilloma-virus type 16 L1 in clinical and vaccine samples | 9.6 ng mL-1; 9.6–201.6 ng mL−1 | [97] |
Color | Unfunctionalized aptamers-coated AuNPs | Acetamiprid in food and water | 1.74 μM; 0–140 μM | [98] |
Color | Glutamic acid-grafted cellulose acetate NFs functionalized with NH2-aptmaers, aptamer-complementary cDNA-coated AuNPs | Kanamycin in food and water | 2.5 nM; 2.5–80 nM | [99] |
Color | Truncated aptamers-coated AuNPs onto nitrocellulose membrane, aptamer-complementary cDNA | Oxytetracycline in food | 5 ng mL−1; N.D. | [100] |
Color | Unfunctionalized aptamers-coated onto nitrocellulose membrane | Gentamicin in food | 300 nM; 10–1000 nM | [101] |
Fluorescence | GO coated with fluoresceine-conjugated aptamers | Tropomyosin allergen in food | 2 nM; 0–1.3 μM | [102] |
Color | Enzyme-assisted, MnO2 nanosheets-induced AuNPs and biotin-labeled cDNA | Alkaline phosphate and ochratoxin A in food | 0.05 U·L−1 (alkaline phosphate) and 5.0 nM (ochratoxin A); 6.25–750 nM (ochratoxin A) | [104] |
Fluorescence | Fe3O4-GO-assisted AT-rich three-way junctions DNA-stabilized CuNPs | Isocarbophos in food and water | 3.38 nM; 10–500 nM | [105] |
Fluorescence | Fluorescent aptamers-coated zirconium-porphyrin MOFs | Chloramphenicol in food | 0.08 pg mL−1; 0.1 pg mL−1–10 ng mL−1 | [106] |
Signal Detected | Main Components | Target | LOD; Range | Reference |
---|---|---|---|---|
Fluorescence | AuNPs–antibodies conjugates, secondary fluorescent antibodies | Epithelial sodium channel in blood | N.D. | [107] |
Color | Magnetic Au-coated Fe3O4NPs–antibodies conjugates | Glyphosate in tap water | 20 ng∙L−1; 0.01–100 μg∙L−1 | [109] |
Color | AuNPs–antibodies and Fe3O4NPs–antibodies conjugates | Prostate specific antigen in serum | 0.009 ng mL−1; 0.01–20 ng mL−1 | [110] |
Fluorescence | Fluorescent AuNPs–albumin, -rhodamine B and -β-lactoglobulin conjugates | Nephrin and podocin in urine | N.D. | [111] |
SPR | Magnetic AuNPs-antibodies, SPR active sensor disks | CD5 in serum | 8.31 fM; N.D. | [112] |
Fluorescence | Fluorescent QDs-antibodies, GO-coated multi-well plates | Prostate specific antigen in urine | 0.05 ng mL−1; 0.15–10 ng mL−1 | [113] |
Fluorescence | Antibodies-conjugated CdSe-ZnSQDs and AuNRs | Porcine reproductive and respiratory syndrome virus in swine serum | 0.55 TCID50 mL−1; 101–3.5 × 104 TCID50 mL−1 | [114] |
Fluorescence | Rhodamine-labelled peptides adsorbed onto WS2-Pt-Fe2O3 micromotors | Bacterial lipopolysaccharides | 0.12 nM; 4.0–1,000,000 ng mL−1 | [115] |
Fluorescence | Fluorescent bovine serum album-wrapped CdSe-ZnSQDs conjugated to antibodies targeting the glycosylated hemoglobin, nitrocellulose membrane | Glycosylated hemoglobin in blood | N.D. | [116] |
SERS | Antibodies-conjugated AuNSs, nitrocellulose membrane | Metalloproteinase-9, S100 calcium-binding protein B and neuro-specific enolase in blood | 0.01 pg mL−1; 0.0001–1000 ng mL−1 | [117] |
Absorbance | Antibodies-conjugated magnetic Fe3O4 NPs coated with a gold shell | Human growth hormone in serum | 0.082 nmol L−1; 0.1–5.0 nmol L−1 | [118] |
Reflected light | Analyte-induced gold deposition on antibodies-conjugated Mn-ZnS QDs, microscope coverslip | Prostate-specific antigen in serum | 3.5 × 10−3 pg mL−1; 0.01–100 pg·mL−1 | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fata, F.; Gabriele, F.; Angelucci, F.; Ippoliti, R.; Di Leandro, L.; Giansanti, F.; Ardini, M. Bio-Tailored Sensing at the Nanoscale: Biochemical Aspects and Applications. Sensors 2023, 23, 949. https://doi.org/10.3390/s23020949
Fata F, Gabriele F, Angelucci F, Ippoliti R, Di Leandro L, Giansanti F, Ardini M. Bio-Tailored Sensing at the Nanoscale: Biochemical Aspects and Applications. Sensors. 2023; 23(2):949. https://doi.org/10.3390/s23020949
Chicago/Turabian StyleFata, Francesca, Federica Gabriele, Francesco Angelucci, Rodolfo Ippoliti, Luana Di Leandro, Francesco Giansanti, and Matteo Ardini. 2023. "Bio-Tailored Sensing at the Nanoscale: Biochemical Aspects and Applications" Sensors 23, no. 2: 949. https://doi.org/10.3390/s23020949