Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Costly Features in IoT Environment
2.2. Deep Q-Network
2.3. Costly Feature Selection Using RL
Algorithm 1 Procedure of DQN Optimizer and Classifier. |
1 : Initialize replay memory |
2 : Initialize action value function Q with random weights |
3 : for = 1, M do |
4 : for t = 1, T do |
5 : With probability epsilon, select a random action |
6 : if random action is feature: |
7 : Execute action in emulator, and observe reward |
8 : Set state and preprocess policy |
9 : Store transition in replay memory |
10 : Perform a gradient descent step |
11 : if random action is subject number: |
12 : Execute action in the emulator, and observe reward |
13 : Set state and preprocess policy |
14 : Store transition in replay memory |
15 : end for |
16 : end for |
2.4. Hyperparameter Optimization
2.5. Bayesian Optimization
2.6. Hyperband
2.7. BOHB Hyperparameter Optimization
Algorithm 2 Procedure of BOHB algorithm. |
1 : Input the number of maximum budget R, setting |
2 : Initialization the number of setting S = ceil(log R) |
3 : for s = S to 0 do |
4 : set current Configuration A |
5 : for i = 0 to s do |
6 : Select hyperparameter Configuration A |
7 : Get loss L using Configuration A |
8 : A = min(L(A), L(A)) |
9 : for t = 1 to T do |
10 : Calculate a probability function p(g|D) using Gaussian process |
11 : Select observation where x = x a(x) |
12 : Evaluate the objective function y = g(x) + |
13 : Add dataset D = D ∪ ( x, y ) |
14 : Update best observation x = |
15 : end for |
16 : end for |
3. Experiments
3.1. ECG Measurement Experiments
3.2. Feature Extraction
3.3. Evaluation of BOHB-Optimized DQN Authentication Algorithm
3.4. Evaluation of Costly Feature Selection Algorithms
4. Results
4.1. Results of BOHB Optimized DQN Authentication Algorithm
4.2. Results of Costly Feature Selection Algorithms
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of Things security: A survey. J. Netw. Comput. Appl. 2017, 88, 10–28. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Chen, Y.; Liu, H.; Liu, J. User authentication on mobile devices: Approaches, threats and trends. Comput. Netw. 2020, 170, 107118. [Google Scholar] [CrossRef]
- Sicari, S.; Rizzardi, A.; Grieco, L.A.; Coen-Porisini, A. Security, privacy and trust in Internet of Things: The road ahead. Comput. Netw. 2015, 76, 146–164. [Google Scholar] [CrossRef]
- Kumar, J.S.; Patel, D.R. A survey on internet of things: Security and privacy issues. Int. J. Comput. Appl. 2014, 90, 20–26. [Google Scholar]
- Sandhu, R.; Samarati, P. Authentication, access control, and audit. ACM Comput. Surv. (CSUR) 1996, 28, 241–243. [Google Scholar] [CrossRef]
- Jain, A.K.; Ross, A.; Prabhakar, S. An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 4–20. [Google Scholar] [CrossRef] [Green Version]
- O’Gorman, L. Comparing passwords, tokens, and biometrics for user authentication. Proc. IEEE 2003, 91, 2021–2040. [Google Scholar] [CrossRef]
- Frischholz, R.W.; Dieckmann, U. BiolD: A multimodal biometric identification system. Computer 2000, 33, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Unar, J.; Seng, W.C.; Abbasi, A. A review of biometric technology along with trends and prospects. Pattern Recognit. 2014, 47, 2673–2688. [Google Scholar] [CrossRef]
- Pankanti, S.; Bolle, R.M.; Jain, A. Biometrics: The future of identification [guest eeditors’ introduction]. Computer 2000, 33, 46–49. [Google Scholar] [CrossRef]
- Jain, A.K.; Ross, A.; Pankanti, S. Biometrics: A tool for information security. IEEE Trans. Inf. Forensics Secur. 2006, 1, 125–143. [Google Scholar] [CrossRef]
- De Luis-Garcia, R.; Alberola-Lopez, C.; Aghzout, O.; Ruiz-Alzola, J. Biometric identification systems. Signal Process. 2003, 83, 2539–2557. [Google Scholar] [CrossRef]
- Prabhakar, S.; Pankanti, S.; Jain, A.K. Biometric recognition: Security and privacy concerns. IEEE Secur. Priv. 2003, 1, 33–42. [Google Scholar] [CrossRef]
- Maltoni, D.; Maio, D.; Jain, A.K.; Prabhakar, S. Handbook of Fingerprint Recognition; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Van der Putte, T.; Keuning, J. Biometrical fingerprint recognition: Don’t get your fingers burned. In Smart Card Research and Advanced Applications; Springer: Berlin/Heidelberg, Germany, 2000; pp. 289–303. [Google Scholar]
- Gupta, P.; Behera, S.; Vatsa, M.; Singh, R. On iris spoofing using print attack. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 1681–1686. [Google Scholar]
- Tolosana, R.; Vera-Rodriguez, R.; Fierrez, J.; Morales, A.; Ortega-Garcia, J. Deepfakes and beyond: A survey of face manipulation and fake detection. arXiv 2020, arXiv:2001.00179. [Google Scholar] [CrossRef]
- Singh, Y.N.; Singh, S.K. Vitality detection from biometrics: State-of-the-art. In Proceedings of the 2011 World Congress on Information and Communication Technologies, Mumbai, India, 11–14 December 2011; pp. 106–111. [Google Scholar]
- Odinaka, I.; Lai, P.H.; Kaplan, A.D.; O’Sullivan, J.A.; Sirevaag, E.J.; Rohrbaugh, J.W. ECG biometric recognition: A comparative analysis. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1812–1824. [Google Scholar] [CrossRef]
- Singh, Y.N.; Singh, S.K.; Ray, A.K. Bioelectrical signals as emerging biometrics: Issues and challenges. ISRN Signal Process. 2012, 2012, 712032. [Google Scholar] [CrossRef] [Green Version]
- Li, S.Z. Encyclopedia of Biometrics: I-Z; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 2. [Google Scholar]
- Karimian, N.; Wortman, P.A.; Tehranipoor, F. Evolving authentication design considerations for the internet of biometric things (IoBT). In Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Pittsburgh, PA, USA, 1–7 October 2016; pp. 1–10. [Google Scholar]
- Hoekema, R.; Uijen, G.J.; Van Oosterom, A. Geometrical aspects of the interindividual variability of multilead ECG recordings. IEEE Trans. Biomed. Eng. 2001, 48, 551–559. [Google Scholar] [CrossRef]
- Van Oosterom, A.; Hoekema, R.; Uijen, G. Geometrical factors affecting the interindividual variability of the ECG and the VCG. J. Electrocardiol. 2000, 33, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Green, L.S.; Lux, R.L.; Haws, C.W.; Williams, R.R.; Hunt, S.C.; Burgess, M.J. Effects of age, sex, and body habitus on QRS and ST-T potential maps of 1100 normal subjects. Circulation 1985, 71, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Frank, S.; Colliver, J.A.; Frank, A. The electrocardiogram in obesity: Statistical analysis of 1029 patients. J. Am. Coll. Cardiol. 1986, 7, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Labati, R.D.; Muñoz, E.; Piuri, V.; Sassi, R.; Scotti, F. Deep-ECG: Convolutional neural networks for ECG biometric recognition. Pattern Recognit. Lett. 2019, 126, 78–85. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Zeng, X. HeartID: A multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications. IEEE Access 2017, 5, 11805–11816. [Google Scholar] [CrossRef]
- Hammad, M.; Zhang, S.; Wang, K. A novel two-dimensional ECG feature extraction and classification algorithm based on convolution neural network for human authentication. Future Gener. Comput. Syst. 2019, 101, 180–196. [Google Scholar] [CrossRef]
- Biel, L.; Pettersson, O.; Philipson, L.; Wide, P. ECG analysis: A new approach in human identification. IEEE Trans. Instrum. Meas. 2001, 50, 808–812. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.N.; Gupta, P. Biometrics method for human identification using electrocardiogram. In Proceedings of the International Conference on Biometrics, Alghero, Italy, 2–5 June 2009; pp. 1270–1279. [Google Scholar]
- Israel, S.A.; Irvine, J.M.; Cheng, A.; Wiederhold, M.D.; Wiederhold, B.K. ECG to identify individuals. Pattern Recognit. 2005, 38, 133–142. [Google Scholar] [CrossRef]
- Arteaga-Falconi, J.S.; Al Osman, H.; El Saddik, A. ECG authentication for mobile devices. IEEE Trans. Instrum. Meas. 2015, 65, 591–600. [Google Scholar] [CrossRef]
- Wübbeler, G.; Stavridis, M.; Kreiseler, D.; Bousseljot, R.D.; Elster, C. Verification of humans using the electrocardiogram. Pattern Recognit. Lett. 2007, 28, 1172–1175. [Google Scholar] [CrossRef]
- Shen, T.W.; Tompkins, W.; Hu, Y. One-lead ECG for identity verification. In Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society Engineering in Medicine and Biology, Houston, TX, USA, 23–26 October 2002; Volume 1, pp. 62–63. [Google Scholar]
- Gutta, S.; Cheng, Q. Joint feature extraction and classifier design for ECG-based biometric recognition. IEEE J. Biomed. Health Inform. 2015, 20, 460–468. [Google Scholar] [CrossRef]
- Odinaka, I.; Lai, P.H.; Kaplan, A.D.; O’Sullivan, J.A.; Sirevaag, E.J.; Kristjansson, S.D.; Sheffield, A.K.; Rohrbaugh, J.W. ECG biometrics: A robust short-time frequency analysis. In Proceedings of the 2010 IEEE International Workshop on Information Forensics and Security, Seattle, WA, USA, 12–15 December 2010; pp. 1–6. [Google Scholar]
- Chan, A.D.; Hamdy, M.M.; Badre, A.; Badee, V. Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. Instrum. Meas. 2008, 57, 248–253. [Google Scholar] [CrossRef]
- Liau, H.F.; Isa, D. Feature selection for support vector machine-based face-iris multimodal biometric system. Expert Syst. Appl. 2011, 38, 11105–11111. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, L.; Tan, T. Ordinal feature selection for iris and palmprint recognition. IEEE Trans. Image Process. 2014, 23, 3922–3934. [Google Scholar] [CrossRef]
- Farmanbar, M.; Toygar, Ö. Feature selection for the fusion of face and palmprint biometrics. Signal Image Video Process. 2016, 10, 951–958. [Google Scholar] [CrossRef]
- Patro, K.K.; Jaya Prakash, A.; Jayamanmadha Rao, M.; Rajesh Kumar, P. An efficient optimized feature selection with machine learning approach for ECG biometric recognition. IETE J. Res. 2020, 68, 2743–2754. [Google Scholar] [CrossRef]
- Sung, D.; Kim, J.; Koh, M.; Park, K. ECG authentication in post-exercise situation. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 446–449. [Google Scholar]
- Hwang, H.B.; Kwon, H.; Chung, B.; Lee, J.; Kim, I.Y. ECG authentication based on non-linear normalization under various physiological conditions. Sensors 2021, 21, 6966. [Google Scholar] [CrossRef]
- Kim, J.; Yang, G.; Kim, J.; Lee, S.; Kim, K.K.; Park, C. Efficiently Updating ECG-Based Biometric Authentication Based on Incremental Learning. Sensors 2021, 21, 1568. [Google Scholar] [CrossRef]
- Janisch, J.; Pevnỳ, T.; Lisỳ, V. Classification with costly features using deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 3959–3966. [Google Scholar]
- Gottesman, O.; Johansson, F.; Komorowski, M.; Faisal, A.; Sontag, D.; Doshi-Velez, F.; Celi, L.A. Guidelines for reinforcement learning in healthcare. Nat. Med. 2019, 25, 16–18. [Google Scholar] [CrossRef]
- Seok, W.; Yeo, M.; You, J.; Lee, H.; Cho, T.; Hwang, B.; Park, C. Optimal feature search for vigilance estimation using deep reinforcement learning. Electronics 2020, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Dulac-Arnold, G.; Mankowitz, D.; Hester, T. Challenges of real-world reinforcement learning. arXiv 2019, arXiv:1904.12901. [Google Scholar]
- Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih, V.; Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning, I.; et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1407–1416. [Google Scholar]
- Mao, H.; Alizadeh, M.; Menache, I.; Kandula, S. Resource management with deep reinforcement learning. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks, Atlanta, GA, USA, 9–10 November 2016; pp. 50–56. [Google Scholar]
- Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Sallab, A.A.A.; Yogamani, S.; Pérez, P. Deep reinforcement learning for autonomous driving: A survey. arXiv 2020, arXiv:2002.00444. [Google Scholar] [CrossRef]
- Rasoul, S.; Adewole, S.; Akakpo, A. Feature selection using reinforcement learning. arXiv 2021, arXiv:2101.09460. [Google Scholar]
- Liu, D.R.; Li, H.L.; Wang, D. Feature selection and feature learning for high-dimensional batch reinforcement learning: A survey. Int. J. Autom. Comput. 2015, 12, 229–242. [Google Scholar] [CrossRef]
- Fan, W.; Liu, K.; Liu, H.; Ge, Y.; Xiong, H.; Fu, Y. Interactive reinforcement learning for feature selection with decision tree in the loop. IEEE Trans. Knowl. Data Eng. 2021, 35, 1624–1636. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement learning. arXiv 2013, arXiv:1312.5602. [Google Scholar]
- Lample, G.; Chaplot, D.S. Playing FPS games with deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Falkner, S.; Klein, A.; Hutter, F. BOHB: Robust and Efficient Hyperparameter Optimization at Scale. In Proceedings of the 35th International Conference on Machine Learning; Dy, J., Krause, A., Eds.; PMLR: Stockholm, Sweden, 2018; Volume 80, pp. 1437–1446. [Google Scholar]
- Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69. [Google Scholar] [CrossRef]
- Urbanowicz, R.J.; Meeker, M.; La Cava, W.; Olson, R.S.; Moore, J.H. Relief-based feature selection: Introduction and review. J. Biomed. Inform. 2018, 85, 189–203. [Google Scholar] [CrossRef]
- Mitchell, T. Introduction to machine learning. Mach. Learn. 1997, 7, 2–5. [Google Scholar]
- Sun, G.; Li, J.; Dai, J.; Song, Z.; Lang, F. Feature selection for IoT based on maximal information coefficient. Future Gener. Comput. Syst. 2018, 89, 606–616. [Google Scholar] [CrossRef]
- Lin, Y.; Zhu, X.; Zheng, Z.; Dou, Z.; Zhou, R. The individual identification method of wireless device based on dimensionality reduction and machine learning. J. Supercomput. 2019, 75, 3010–3027. [Google Scholar] [CrossRef]
- Memon, M.H.; Li, J.P.; Haq, A.U.; Memon, M.H.; Zhou, W. Breast cancer detection in the IOT health environment using modified recursive feature selection. Wirel. Commun. Mob. Comput. 2019, 2019, 5176705. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, B.; Anuradha, J. A review of feature selection and its methods. Cybern. Inf. Technol. 2019, 19, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Okafor, N.U.; Alghorani, Y.; Delaney, D.T. Improving Data Quality of Low-cost IoT Sensors in Environmental Monitoring Networks Using Data Fusion and Machine Learning Approach. ICT Express 2020, 6, 220–228. [Google Scholar] [CrossRef]
- Jha, R.; Bhattacharjee, V.; Mustafi, A. IoT in Healthcare: A Big Data Perspective. In Smart Healthcare Analytics in IoT Enabled Environment; Springer: Berlin/Heidelberg, Germany, 2020; pp. 201–211. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press: Cambridge, UK, 1998; Volume 135. [Google Scholar]
- Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef]
- Kaelbling, L.P.; Littman, M.L.; Cassandra, A.R. Planning and acting in partially observable stochastic domains. Artif. Intell. 1998, 101, 99–134. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Guo, Y.; Yu, L.; Chen, X.; Li, P. Deep Q-network-based feature selection for multisourced data cleaning. IEEE Internet Things J. 2020, 8, 16153–16164. [Google Scholar] [CrossRef]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 2015, 104, 148–175. [Google Scholar] [CrossRef] [Green Version]
- Feurer, M.; Hutter, F. Hyperparameter optimization. In Automated Machine Learning; Springer: Cham, Switzerland, 2019; pp. 3–33. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 2012, 25, 2951–2959. [Google Scholar]
- Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816. [Google Scholar]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In Proceedings of the Advances in Neural Information Processing Systems 24 (NIPS 2011), Granada, Spain, 12–15 December 2011; Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2011; Volume 24, pp. 2546–2554. [Google Scholar]
- García-González, M.A.; Argelagós-Palau, A.; Fernández-Chimeno, M.; Ramos-Castro, J. A comparison of heartbeat detectors for the seismocardiogram. In Proceedings of the Computing in Cardiology 2013, Zaragoza, Spain, 22–25 September 2013; pp. 461–464. [Google Scholar]
- Tawfik, M.M.; Kamal, H.S.T. Human identification using QT signal and QRS complex of the ECG. Online J. Electron. Electr. Eng. (OJEEE) 2011, 3, 1–5. [Google Scholar]
- Singh, B.; Singh, P.; Budhiraja, S. Various approaches to minimise noises in ECG signal: A survey. In Proceedings of the 2015 Fifth International Conference on Advanced Computing & Communication Technologies, Rohtak, India, 21–22 February 2015; pp. 131–137. [Google Scholar]
- Hammad, M.; Pławiak, P.; Wang, K.; Acharya, U.R. ResNet-Attention model for human authentication using ECG signals. Expert Syst. 2020, 38, e12547. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, BME-32, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Bazi, Y.; Melgani, F. Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3374–3385. [Google Scholar] [CrossRef]
- Pal, M.; Foody, G.M. Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2297–2307. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef] [Green Version]
- Bosch, A.; Zisserman, A.; Munoz, X. Image classification using random forests and ferns. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio De Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar]
- Patcha, A.; Park, J.M. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Comput. Netw. 2007, 51, 3448–3470. [Google Scholar] [CrossRef]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Malik, J.; Girdhar, D.; Dahiya, R.; Sainarayanan, G. Reference threshold calculation for biometric authentication. IJ Image Graph. Signal Process. 2014, 2, 46–53. [Google Scholar] [CrossRef]
- He, X.; Zhao, K.; Chu, X. AutoML: A survey of the state-of-the-art. Knowl.-Based Syst. 2021, 212, 106622. [Google Scholar] [CrossRef]
- Mazyavkina, N.; Sviridov, S.; Ivanov, S.; Burnaev, E. Reinforcement learning for combinatorial optimization: A survey. Comput. Oper. Res. 2021, 134, 105400. [Google Scholar] [CrossRef]
Features | |
---|---|
Amplitude | R–P Amplitude R–S Amplitude R–T Amplitude P–S Amplitude P–T Amplitude S–T Amplitude R–Q Amplitude Q–T Amplitude Q–S Amplitude P–Q Amplitude |
Interval | R–P Interval R–Q Interval R–S Interval R–T Interval P–Q Interval P–S Interval P–T Interval Q–S Interval Q–T Interval S–T Interval R–R Interval R–T Interval |
Slope | P–R Slope R–S Slope S–T Slope Q–R Slope P–Q Slope Q–S Slope |
Angle | Q Angle R Angle S Angle |
Range | Min | Max | Default | |
---|---|---|---|---|
Hyperparameter | ||||
Number of layers | 1 | 4 | 2 | |
Numbers of nodes in each layer | 16 | 64 | 32 | |
Learning rate | 0.001 | 0.1 | 0.01 | |
Optimizer | Adam, SGD, RMSprop | |||
SGD momentum | 0 | 0.99 | 0.9 |
Subject No. | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 |
---|---|---|---|---|---|---|
1 | 3055 | 3037 | 3067 | 3071 | 3132 | 2931 |
2 | 2839 | 3313 | 3294 | 3231 | 3181 | 3075 |
3 | 2923 | 3150 | 2949 | 3606 | 2962 | 2805 |
4 | 3130 | 2925 | 3339 | 3075 | 2832 | 3099 |
5 | 3021 | 3423 | 3129 | 2982 | 3034 | 3399 |
6 | 3622 | 3399 | 3131 | 2931 | 3178 | 3147 |
7 | 3093 | 2955 | 3172 | 3062 | 3264 | 3414 |
8 | 3303 | 3321 | 3284 | 2751 | 2931 | 3255 |
9 | 2667 | 2771 | 3034 | 2806 | 2994 | 3063 |
10 | 3007 | 3377 | 2898 | 3131 | 2985 | 3327 |
11 | 3429 | 3693 | 3281 | 3522 | 3367 | 3491 |
Total | 34,089 | 35,364 | 34,578 | 34,168 | 33,860 | 35,006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.; Kim, J.; Yu, H.; Yang, G.; Sohn, I.; Cho, Y.; Park, C. Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning. Sensors 2023, 23, 1230. https://doi.org/10.3390/s23031230
Baek S, Kim J, Yu H, Yang G, Sohn I, Cho Y, Park C. Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning. Sensors. 2023; 23(3):1230. https://doi.org/10.3390/s23031230
Chicago/Turabian StyleBaek, Suwhan, Juhyeong Kim, Hyunsoo Yu, Geunbo Yang, Illsoo Sohn, Youngho Cho, and Cheolsoo Park. 2023. "Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning" Sensors 23, no. 3: 1230. https://doi.org/10.3390/s23031230
APA StyleBaek, S., Kim, J., Yu, H., Yang, G., Sohn, I., Cho, Y., & Park, C. (2023). Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning. Sensors, 23(3), 1230. https://doi.org/10.3390/s23031230