A Curvature Sensor Utilizing the Matteucci Effect in Amorphous Wire
Abstract
:1. Introduction
2. Sensor Design
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hart, M.G. Clinical associations of Dupuytren’s disease. Hear 2005, 81, 425–428. [Google Scholar] [CrossRef] [Green Version]
- Saggio, G.; Riillo, F.; Sbernini, L.; Quitadamo, L.R. Resistive flex sensors: A survey. Smart Mater. Struct. 2015, 25, 013001. [Google Scholar] [CrossRef]
- Bloomberg UK, Company Overview of Abrams Gentile Entertainment, Inc. Available online: https://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=995949 (accessed on 20 January 2023).
- Backwards Compatible—The Power Glove. Available online: http://www.abc.net.au/tv/goodgame/stories/s2248843.htm (accessed on 20 January 2023).
- Images Scientific Instruments. Two-Directional Bi-Flex Sensors, Staten Island, NY, USA. Available online: https://www.imagesco.com/articles/flex/sensor-pg1.html (accessed on 20 January 2023).
- Corp. S. S. Salt Lake City, UT, USA. Available online: http://www.spectrasymbol.com/ (accessed on 20 January 2023).
- Flexpoint Sensor Systems. Draper, UT, USA. Available online: http://www.flexpoint.com/ (accessed on 20 January 2023).
- Orengo, G.; Saggio, G.; Bocchetti, S.; Giannini, F. Evaluating strain sensor performance for motion analysis. In Proceedings of the BIODEVICES, Rome, Italy, 26-29 January 2011; pp. 244–249. [Google Scholar] [CrossRef]
- Williams, N.; Penrose, J.; Caddy, C.; Barnes, E.; Hose, D.; Harley, P. A goniometric glove for clinical hand assessment: Construction, calibration and validation. J. Hand Surg. Br. Eur. 2000, 25, 200–207. [Google Scholar] [CrossRef]
- Costantini, G.; Todisco, M.; Saggio, G. A wireless glove to perform music in real-time. In Proceedings of the 8th WSEAS International Conference on Applied Electromagnetics, Wireless and Optical Communications, Penang, Malaysia, 23–25 March 2010. [Google Scholar]
- Saggio, G.; De Sanctis, M.; Cianca, E.; Latessa, G.; De Santis, F.; Giannini, F. Long term measurement of human joint movements for health care and rehabilitation purposes. In Proceedings of the 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Aalborg, Denmark, 17–20 May 2009; pp. 674–678. [Google Scholar] [CrossRef] [Green Version]
- Borghetti, M.; Sardini, E.; Serpelloni, M. Evaluation of bend sensors for limb motion monitoring. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lisbon, Portugal, 11–12 June 2014. [Google Scholar]
- Simone, L.K.; Kamper, D.G. Design considerations for a wearable monitor to measure finger posture. J. Neuroeng. Rehabilitation 2005, 2, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saggio, G. Bend sensor arrays for hand movement tracking in biomedical systems. In Proceedings of the 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Savelletri di Fasano, Italy, 28–29 June 2011; pp. 51–54. [Google Scholar]
- Flynn, B.O.; Sanchez, J.; Angove, P.; Connolly, J.; Condell, J.; Curran, K. Novel smart sensor glove for arthritis rehabilitation. In Proceedings of the EPoSS 2013-EPoSS General Assembly & Annual Forum 2013, Brussels, Belgium, 24 September 2013. [Google Scholar]
- Gentner, R.; Classen, J. Development and evaluation of a low-cost sensor glove for assessment of human finger movements in neurophysiological settings. J. Neurosci. Methods 2009, 178, 138–147. [Google Scholar] [CrossRef]
- Saggio, G. A novel array of flex sensors for a goniometric glove. Sens. Actuators A Phys. 2014, 205, 119–125. [Google Scholar] [CrossRef]
- Jurgens, J.; Patterson, P. Development and evaluation of an inexpensive sensor system for use in measuring relative finger positions. Med. Eng. Phys. 1997, 19, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Won, S.M.; Kim, H.-S.; Lu, N.; Kim, D.-G.; Del Solar, C.; Duenas, T.; Ameen, A.; Rogers, J.A. Piezoresistive Strain Sensors and Multiplexed Arrays Using Assemblies of Single-Crystalline Silicon Nanoribbons on Plastic Substrates. IEEE Trans. Electron Devices 2011, 58, 4074–4078. [Google Scholar] [CrossRef]
- Alaferdov, A.V.; Savu, R.; A Rackauskas, T.; Rackauskas, S.; A Canesqui, M.; De Lara, D.S.; O Setti, G.; Joanni, E.; De Trindade, G.M.; Lima, U.B.; et al. A wearable, highly stable, strain and bending sensor based on high aspect ratio graphite nanobelts. Nanotechnology 2016, 27, 375501. [Google Scholar] [CrossRef]
- Peng, Y.; Song, X.; Pang, K.; Yang, Q.; Xu, Z.; Zhang, M. A Flexible and Stretchable Bending Sensor Based on Hydrazine-Reduced Porous Graphene for Human Motion Monitoring. IEEE Sens. J. 2020, 20, 12661–12670. [Google Scholar] [CrossRef]
- Wang, H.; Tong, Y.; Zhao, X.; Tang, Q.; Liu, Y. Flexible, high-sensitive, and wearable strain sensor based on organic crystal for human motion detection. Org. Electron. 2018, 61, 304–311. [Google Scholar] [CrossRef]
- Atalay, O. Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications. Materials 2018, 11, 768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onodera, K.; Watanabe, K.; Nishiyama, M. Development of wearable sensitive glove embedded with hetero-core fiber-optic nerves for monitoring finger joints. In Proceedings of the IEEE SENSORS, Limerick, Ireland, 28–31 October 2011; pp. 699–702. [Google Scholar]
- Wang, Q.; Liu, Y. Review of optical fiber bending/curvature sensor. Measurement 2018, 130, 161–176. [Google Scholar] [CrossRef]
- Weng, Y.; Wang, S.; Zhang, H.; Gu, H.; Wei, X. A high resolution tilt measurement system based on multi-accelerometers. Measurement 2017, 109, 215–222. [Google Scholar] [CrossRef]
- Patonis, P.; Patias, P.; Tziavos, I.N.; Rossikopoulos, D.; Margaritis, K.G. A Fusion Method for Combining Low-Cost IMU/Magnetometer Outputs for Use in Applications on Mobile Devices. Sensors 2018, 18, 2616. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.-S.; Lee, I.-J.; Chiang, P.-Y.; Huang, S.-Y.; Peng, C.-W. A Modular Data Glove System for Finger and Hand Motion Capture Based on Inertial Sensors. J. Med. Biol. Eng. 2019, 39, 532–540. [Google Scholar] [CrossRef] [Green Version]
- O’Flynn, B.; Sanchez, J.T.; Connolly, J.; Condell, J.; Curran, K.; Gardiner, P.; Downes, B. Integrated Smart Glove for Hand Motion Monitoring. In Proceedings of the SENSORCOMM: The Ninth International Conference on Sensor Technologies and Applications, Venice, Italy, 23–28 August 2015. [Google Scholar]
- Kouchakzadeh, S.; Narooei, K. Simulation of piezoresistance and deformation behavior of a flexible 3D printed sensor considering the nonlinear mechanical behavior of materials. Sens. Actuators A Phys. 2021, 332, 113214. [Google Scholar] [CrossRef]
- Nassar, H.; Ntagios, M.; Navaraj, W.T.; Dahiva, R. Multi-material 3D Printed Bendable Smart Sensing Structures. In Proceedings of the IEEE Sensors, New Delhi, India, 28–31 October 2018. [Google Scholar]
- Borghetti, M.; Sardini, E.; Serpelloni, M. Sensorized Glove for Measuring Hand Finger Flexion for Rehabilitation Purposes. IEEE Trans. Instrum. Meas. 2013, 62, 3308–3314. [Google Scholar] [CrossRef]
- Nabias, J.; Asfour, A.; Yonnet, J.-P. The Impact of Bending Stress on the Performance of Giant Magneto-Impedance (GMI) Magnetic Sensors. Sensors 2017, 17, 640. [Google Scholar] [CrossRef] [Green Version]
- Pulido, E.; Del Real, R.P.; Conde, F.; Rivero, G.; Vazquez, M.; Ascasibar, E.; Hernando, A. Amorphous wire magnetic field and DC current sensor based on the inverse Wiedemann effect. IEEE Trans. Magn. 1991, 27, 5241–5243. [Google Scholar] [CrossRef]
- Morón, C.; Cabrera, C.; Morón, A.; García, A.; González, M. Magnetic sensors based on amorphous ferromagnetic materials: A review. Sensors 2015, 15, 28340–28366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohri, K.; Humphrey, F.B.; Panina, L.V.; Honkura, Y.; Yamasaki, J.; Uchiyama, T.; Hirami, M. Advances of amorphous wire magnetics over 27 years. Phys. Status Solidi (A) 2009, 206, 601–607. [Google Scholar] [CrossRef]
- Mohri, K.; Humphrey, F.; Yamasaki, J.; Okamura, K. Jitter-less pulse generator elements using amorphous bistable wires. IEEE Trans. Magn. 1984, 20, 1409–1411. [Google Scholar] [CrossRef]
- DeCristofaro, N. Amorphous metals in electric-power distribution applications. MRS Bull. 1998, 23, 50–56. [Google Scholar] [CrossRef]
- Alimohammadi, S.; Meydan, T.; Williams, P. Strain sensing by exploiting the Matteucci effect in amorphous wire. Int. J. Appl. Electromagn. Mech. 2019, 59, 115–121. [Google Scholar] [CrossRef]
- Konno, Y.; Mohri, K. Magnetostriction measurements for amorphous wires. IEEE Trans. Magn. 1989, 25, 3623–3625. [Google Scholar] [CrossRef]
- Podut, A. Strength of Materials Supplement for Power Engineering; British Columbia Institute of Technology: Burnaby, BC, Canada, 2018. [Google Scholar]
- Atalay, S.; Squire, P.T. Comparative measurements of the field dependence of Young’s modulus and shear modulus in Fe-based amorphous wire. J. Appl. Phys. 1991, 70, 6516–6518. [Google Scholar] [CrossRef]
- Simone, L.K.; Sundarrajan, N.; Luo, X.; Jia, Y.; Kamper, D.G. A low cost instrumented glove for extended monitoring and functional hand assessment. J. Neurosci. Methods 2007, 160, 335–348. [Google Scholar] [CrossRef]
- Wang, L.; Meydan, T.; Williams, P.; Wolfson, K.T. A proposed optical-based sensor for assessment of hand movement. In Proceedings of the 2015 IEEE SENSORS, Busan, Republic of Korea, 1–4 November 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Donno, M.; Palange, E.; Di Nicola, F.; Bucci, G.; Ciancetta, F. A New Flexible Optical Fiber Goniometer for Dynamic Angular Measurements: Application to Human Joint Movement Monitoring. IEEE Trans. Instrum. Meas. 2008, 57, 1614–1620. [Google Scholar] [CrossRef]
- Nishiyama, M.; Watanabe, K. Wearable Sensing Glove With Embedded Hetero-Core Fiber-Optic Nerves for Unconstrained Hand Motion Capture. IEEE Trans. Instrum. Meas. 2009, 58, 3995–4000. [Google Scholar] [CrossRef]
Sensors | Sensitivity (mV/cm) | Linearity (R2) | Max SD (mV) | Min SD (mV) | Average SD (mV) | Uncertainty of Sensitivity (mV/cm) |
---|---|---|---|---|---|---|
S1 | 5.45 | 0.96 | 0.36 | 0.18 | 0.27 | 0.01 |
S2 | 3.95 | 0.95 | 0.67 | 0.24 | 0.45 | 0.02 |
S3 | 4.45 | 0.99 | 0.27 | 0.11 | 0.19 | 0.01 |
S4 | 2.79 | 0.97 | 0.25 | 0.07 | 0.16 | 0.005 |
SA1 | 5.62 | 0.99 | 0.61 | 0.18 | 0.39 | 0.02 |
SA2 | 5.08 | 0.96 | 0.37 | 0.16 | 0.26 | 0.01 |
TSA | 5.12 | 0.93 | 0.62 | 0.33 | 0.47 | 0.02 |
Sensor Type | Flat Condition Output (mV) | Trend Line Extrapolation to 0 (mV) | % Error |
---|---|---|---|
S1 | 137 | 142.85 | 4.2 |
S2 | 134 | 137.31 | 2.5 |
S3 | 130 | 134.98 | 3.8 |
S4 | 130 | 129.79 | 0.2 |
SA1 | 130 | 136.11 | 4.7 |
SA2 | 134 | 140.04 | 4.5 |
TSA | 136 | 141.48 | 4.0 |
Sensors | Linearity | Resolution | Measuring Range | Repeatability (SD) | Application |
---|---|---|---|---|---|
Sensor SA1 | 0.99 | 0.2° | 0–143° | 0.9° < SD < 1.42° (Range for all sensors in this work) | Wearable gloves |
Hydrazine-Reduced Porous Graphene sensor [21] | R2: 0.99 | 1° | 90° | Mean square error (MSE): 0.105 | Blood pressure estimation |
Optical sensors [44,45,46] | Non-linear | 0.01° < R < 2° | 90° to 97° | 1.15° < SD < 1.72 | Wearable gloves |
Flex-resistance sensors [12,43] | Nonlinear between 0 and 20° | R ≤ 2° | 90° | 0.11° < SD < 1.15° | Wearable gloves |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimohammadi, S.; Williams, P.I.; Meydan, T. A Curvature Sensor Utilizing the Matteucci Effect in Amorphous Wire. Sensors 2023, 23, 1243. https://doi.org/10.3390/s23031243
Alimohammadi S, Williams PI, Meydan T. A Curvature Sensor Utilizing the Matteucci Effect in Amorphous Wire. Sensors. 2023; 23(3):1243. https://doi.org/10.3390/s23031243
Chicago/Turabian StyleAlimohammadi, Sahar, Paul Ieuan Williams, and Turgut Meydan. 2023. "A Curvature Sensor Utilizing the Matteucci Effect in Amorphous Wire" Sensors 23, no. 3: 1243. https://doi.org/10.3390/s23031243