The Effect of Air Turbulence on Vortex Beams in Nonlinear Propagation
Abstract
:1. Introduction
2. Numerical Simulation Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.L.; Chen, Y.P.; Cui, S.; Feng, H.; Chen, M.; Zhang, Z.; Yu, J.; Chen, L.M.; Sheng, Z.M.; Zhang, J. Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments. Nat. Photonics 2018, 12, 554–559. [Google Scholar] [CrossRef]
- Dey, I.; Jana, K.; Fedorov, V.Y.; Koulouklidis, A.D.; Mondal, A.; Shaikh, M.; Sarkar, D.; Lad, A.D.; Tzortzakis, S.; Couairon, A.; et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Varela, O.; Alonso, B.; Sola, I.J.; Román, S.; Zaïr, A.; Méndez, C.; Roso, L. Self-compression controlled by the chirp of the input pulse. Opt. Lett. 2010, 35, 3649–3651. [Google Scholar] [CrossRef]
- Adachi, S.; Suzuki, T. Self-compression of femtosecond deep-ultraviolet pulses by filamentation in krypton. Opt. Lett. 2017, 42, 1883–1886. [Google Scholar] [CrossRef]
- Xu, H.L.; Lötstedt, E.; Lwasaki, A.; Yamanouchi, K. Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling. Nat. Commun. 2015, 6, 8347. [Google Scholar] [CrossRef]
- Yao, J.P.; Jiang, S.C.; Chu, W.; Zeng, B.; Wu, C.Y.; Lu, R.F.; Li, Z.T.; Xie, H.Q.; Li, G.H.; Wang, Z.S.; et al. Population Redistribution Among Multiple Electronic States of Molecular Nitrogen Ions in Strong Laser Fields. Phys. Rev. Lett. 2016, 116, 143007. [Google Scholar] [CrossRef]
- Xu, H.L.; Cheng, Y.; Chin, S.-L.; Sun, H.-B. Femtosecond laser ionization and fragmentation of molecules for environmental sensing. Laser Photonics Rev. 2015, 9, 275–293. [Google Scholar] [CrossRef]
- Odhner, J.; Levis, R. Optical Spectroscopy Using Gas-Phase Femtosecond Laser Filamentation. Rev. Phys. Chem. 2014, 65, 605–628. [Google Scholar] [CrossRef]
- Couairon, A.; Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 2007, 441, 47–189. [Google Scholar] [CrossRef]
- Bergé, L.; Skupin, S.; Kasparian, J.; Wolf, J.-P. Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 2007, 70, 1633–1713. [Google Scholar] [CrossRef] [Green Version]
- Kasparian, J.; Wolf, J.-P. Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express 2008, 16, 466–493. [Google Scholar] [CrossRef] [PubMed]
- Béjot, P.; Kasparian, J.; Henin, S.; Loriot, V.; Vieillard, T.; Hertz, E.; Faucher, O.; Lavorel, B.; Wolf, J.-P. Higher-Order Kerr Terms Allow Ionization-Free Filamentation in Gases. Phys. Rev. Lett. 2010, 104, 103903. [Google Scholar] [CrossRef] [PubMed]
- Béjot, P.; Kasparian, J.; Lavorel, B.; Wolf, J.-P.; Faucher, O. Transition from Plasma-Driven to Kerr-Driven Laser Filamentation. Phys. Rev. Lett. 2011, 106, 243902. [Google Scholar] [CrossRef] [PubMed]
- Schimmel, G.; Produit, T.; Mongin, D.; Kasparian, J.; Wolf, J.-P. Free space laser telecommunication through fog. Optica 2018, 5, 1338–1341. [Google Scholar] [CrossRef]
- Schroeder, M.C.; Andral, U.; Wolf, J.-P. Opto-mechanical expulsion of individual micro-particles by laser-induced shockwave in air. AIP Adv. 2022, 12, 095119. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics 2015, 7, 66–106. [Google Scholar] [CrossRef]
- Kim, H.-C.; Lee, Y.H. Hermite–Gaussian and Laguerre–Gaussian beams beyond the paraxial approximation. Opt. Commun. 1999, 169, 9–16. [Google Scholar] [CrossRef]
- Wang, A.D.; Zhu, L.; Deng, M.L.; Lu, B.; Guo, X.J. Experimental demonstration of OAM-basedtransmitter mode diversity data transmission under atmosphere turbulence. Opt. Express 2021, 29, 13171–13182. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, A.D.; Deng, M.L.; Lu, B.; Guo, X.J. Free-space optical communication with quasi-ring Airy vortex beam under limited-size receiving aperture and atmospheric turbulence. Opt. Express 2021, 29, 32580–32590. [Google Scholar] [CrossRef]
- Roux, F.S.; Wellens, T.; Shatokhin, V.N. Entanglement evolution of twisted photons in strong atmospheric turbulence. Phys. Rev. A 2015, 92, 012326. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Agnew, M.; Roger, T.; Roux, F.S.; Konrad, T.; Faccio, D.; Leach, J.; Forbes, A. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Leonhard, N.D.; Shatokhin, V.N.; Buchleitner, A. Universal entanglement decay of photonic-orbital-angular-momentum qubit states in atmospheric turbulence. Phys. Rev. A 2015, 91, 012345. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.X.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; McDuffie, S.; Najjar, M.A.M.; Rafsanjani, S.M.H.; Korotkova, O. Mitigation of atmospheric turbulence with random light carrying OAM. Opt. Commun. 2019, 446, 178–185. [Google Scholar] [CrossRef]
- Ayeni, O.O.; Ojo, J.S.; Owolawi, P.A.; Ajewole, M.O. Performance comparison of diversity techniques with Addictive White Gaussian Channel (AWGC) in free space optical communication (FSO) under atmospheric turbulence scenario. Int. J. Phys. Sci. 2023, 18, 12–18. [Google Scholar] [CrossRef]
- Walsh, S.M.; Karpathakis, S.F.E.; McCann, A.S.; Dix-matthews, B.P.; Frost, A.M.; Gozzard, D.R.; Gravestock, C.T.; Schediwy, S.W. Demonstration of 100 Gbps coherent free-space optical communications at LEO tracking rates. Sci. Rep. 2022, 12, 18345. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Ghassemlooy, Z.; Olyaee, S. Investigation of a hybrid OFDM-PWM/PPM visible light communications system. Opt. Commun. 2018, 429, 65–71. [Google Scholar] [CrossRef]
- Eso, E.; Ghassemlooy, Z.; Zvanovec, S.; Sathian, J.; Abadi, M.M.; Younus, O.I. Performance of Vehicular Visible Light Communications underthe Effects of Atmospheric Turbulence with Aperture Averaging. Sensors 2021, 21, 2751. [Google Scholar] [CrossRef]
- Kasparian, J.; Rodriguez, M.; Méjean, G.; Yu, J.; Salmon, E.; Wille, H.; Bourayou, R.; Frey, S.; André, Y.-B.; Mysyrowicz, A.; et al. White-Light Filaments for Atmospheric Analysis. Science 2003, 301, 61–64. [Google Scholar] [CrossRef]
- Kandidov, V.P.; Kosareva, O.G.; Tamarov, M.P.; Brodeur, A.; Chin, S.L. Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmosphere. Quantum Electron. 1999, 29, 911–915. [Google Scholar] [CrossRef]
- Peñano, J.R.; Sprangle, P.; Hafizi, B.; Ting, A.; Gordon, D.F.; Kapetanakos, C.A. Propagation of ultra-short, intense laser pulses in air. Phys. Plasmas 2004, 11, 2865–2874. [Google Scholar] [CrossRef]
- Sunilkumar, K.; Anand, N.; Moorthy, K.K.; Ilavazhagan, G. Enhanced optical pulse broadening in free-space optical links due to the radiative effects of atmospheric aerosols. Opt. Express 2021, 29, 865–876. [Google Scholar] [CrossRef]
- Chin, S.L.; Talebpour, A.; Yang, J.; Petit, S.; Kandidov, V.P.; Kosareva, O.G.; Tamarov, M.P. Filamentation of femtosecond laser pulses in turbulent air. Appl. Phys. B-Lasers Opt. 2002, 74, 67–76. [Google Scholar] [CrossRef]
- Houard, A.; Franco, M.; Prade, B.; Durécu, A.; Lombard, L.; Bourdon, P.; Vasseur, O.; Fleury, B.; Robert, C.; Michau, V.; et al. Femtosecond filamentation in turbulent air. Phys. Rev. A 2008, 78, 033804. [Google Scholar] [CrossRef]
- Gill, H.S.; Singh, M.L.; Singh, M.; Priyanka; Kaur, S.; Kaur, H. Analysis of full reference quality metrics for image transmission over a MIMO OWC channel under varying turbulent conditions. Int. J. Commun. Syst. 2023, 36, e5426. [Google Scholar]
- Naghshvarianjahromi, M.; Kumar, S.; Deen, M.J. Free Space Ground to Satellite Optical Communications Using Kramers-Kronig Transceiver in the Presence of Atmospheric Turbulence. Sensors 2022, 22, 3435. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.W.; Chin, S.L. Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation. Phys. Rev. A 2007, 76, 013826. [Google Scholar] [CrossRef]
- Sun, X.D.; Gao, H.; Zhang, S.W.; Liu, W.W. Numerical simulation of the generation of multiple laser filaments by an axicon array. J. Mod. Opt. 2013, 60, 1637–1643. [Google Scholar] [CrossRef]
- Talebpour, A.; Yang, J.; Chin, S.L. Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse. Opt. Commun. 1999, 163, 29–32. [Google Scholar] [CrossRef]
- Dubietis, A.; Tamošauskas, G.; Fibich, G.; Ilan, B. Multiple filamentation induced by input-beam ellipticity. Opt. Lett. 2004, 29, 1126–1128. [Google Scholar] [CrossRef]
- Sun, X.D.; Gao, H.; Zeng, B.; Xu, S.Q.; Liu, W.W.; Cheng, Y.; Xu, Z.Z.; Mu, G.G. Multiple filamentation generated by focusing femtosecond laser with axicon. Opt. Lett. 2012, 37, 857–859. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Gao, H.; Sun, X.D.; Liu, W.W. Turbulence-induced beam wandering during femtosecond laser filamentation. Chin. Opt. lett. 2015, 13, 070008. [Google Scholar] [CrossRef]
- Johansson, E.M.; Gavel, D.T. Simulation of stellar speckle imaging. Proc. SPIE 1994, 2200, 372–383. [Google Scholar]
- Charnotskii, M. Comparison of four techniques for turbulent phase screens simulation. J. Opt. Soc. Am. A 2020, 37, 738–747. [Google Scholar] [CrossRef]
- Yuan, Y.S.; Lei, T.; Li, Z.H.; Li, Y.J.; Gao, S.C.; Xie, Z.W.; Yuan, X.C. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams. Sci. Rep. 2017, 7, 2045–2322. [Google Scholar] [CrossRef]
- Polynkin, P.; Kolesik, M.; Roberts, A.; Faccio, D.; Trapani, P.D.; Moloney, J. Generation of extended plasma channels in air using femtosecond Bessel beams. Opt. Express 2008, 16, 15733–15740. [Google Scholar] [CrossRef]
- Akturk, S.; Zhou, B.; Franco, M.; Couairon, A.; Mysyrowicz, A. Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon. Opt. Commun. 2009, 282, 129–134. [Google Scholar] [CrossRef]
- Papazoglou, D.G.; Suntsov, S.; Abdollahpour, D.; Tzortzakis, S. Tunable intense Airy beams and tailored femtosecond laser filaments. Phys. Rev. A 2010, 81, 061807. [Google Scholar] [CrossRef]
- Liao, T.H.; Gao, Q. Image recovery from double amplitudes in fractional Fourier domain. Chin. Phys. 2006, 15, 347–352. [Google Scholar]
- Liu, Y.; Song, X.; Ni, X.; Qi, J.; Liu, Z. Measurement of angle-of-arrival fluctuations over a real atmospheric turbulent path. In Proceedings of the 2015 International Conference on Optoelectronics and Microelectronics, Changchun China, 16–18 July 2015. [Google Scholar]
- Frederickson, P.; Davidson, K.; Zeisse, C.; Bendall, I. A Comparison of Near-surface Bulk and Scintillation Cn2 Measure-ments during EOPACE. Proc. SPIE 1998, 3433, 77–88. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, D.; Li, C.; Sun, X.; Liu, Y.; Zhang, Y.; Gao, H. The Effect of Air Turbulence on Vortex Beams in Nonlinear Propagation. Sensors 2023, 23, 1772. https://doi.org/10.3390/s23041772
Zhu D, Li C, Sun X, Liu Y, Zhang Y, Gao H. The Effect of Air Turbulence on Vortex Beams in Nonlinear Propagation. Sensors. 2023; 23(4):1772. https://doi.org/10.3390/s23041772
Chicago/Turabian StyleZhu, Di, Chunhua Li, Xiaodong Sun, Yali Liu, Yuqi Zhang, and Hui Gao. 2023. "The Effect of Air Turbulence on Vortex Beams in Nonlinear Propagation" Sensors 23, no. 4: 1772. https://doi.org/10.3390/s23041772