Marine Structural Health Monitoring with Optical Fiber Sensors: A Review
Abstract
:1. Introduction
2. Classifications and Principles of Marine OFSs
- (i)
- Optical fiber point sensors, used for measuring the discrete points, that mainly include fiber Bragg grating (FBG) sensors [33,34] and interferometric sensors [35,36,37] in marine health monitoring. Since FBG sensors can present multiplexing capabilities for quasi-distributed sensors, its principle is described separately in Section 3.2. In Section 3.1, we mainly introduce the principle of interference sensors in detail.
- (ii)
- The quasi-distributed sensor used for measuring is a set of regularly distributed spatial discrete points. As mentioned above, FBG is a point-like sensor with a small gauge length and can be used for single-point sensing. The FBG sensor has developed rapidly ever since the basic physics effect of FBG sensing was discovered. FBG based on the wavelength division multiplex (WDM) principle could realize the multiplexed arrays due to ultra-narrow spectral bandwidth. The quasi-distributed FBG sensing network connects multiple FBGs together using signal transmission fibers. It is one of the most popular wavelength-modulated sensors [38].
- (iii)
- The distributed sensor is used to be continuously monitored in space. Different from point or quasi-distributed sensing, the distributed optical fiber sensors (DOFSs) can realize the detection of thousands of sensing points and offer the possibility of measuring variations along the entire optical fiber. DOFS can obtain test data in the spatial domain across a large distance by optical signal processing of backscattered light induced at any point located on the sensing fiber. DOFS mainly includes reflection, wavelength scanning, and interference methods. The reflection method is one of the most popular methods to measure the backscattering light in the process of optical fiber transmission, mainly including two different types: optical frequency domain reflectometry (OFDR) [39,40] and optical time domain reflectometry (OTDR) [41,42].
3. Typical Applications of OFSs for Marine SHM
3.1. Point Sensing (Interferometer)
3.1.1. Working Principles
3.1.2. Applications
3.2. Quasi-Distributed Sensing (WDM-FBG)
3.2.1. Working Principle
3.2.2. Applications
3.3. Distributed Sensing (DOFS)
3.3.1. Working Principle
3.3.2. Applications
4. Conclusions and Outlooks
- (a)
- Novel optical fiber sensing structures and new smart materials are greatly needed for continually improving the detection sensitivity. They are the main avenues of designing new optical fiber sensing structures or fabricating optical fibers using new materials or technologies to be increased. Furthermore, combining machine-learning algorithms to improve the performance of optical fiber sensing systems is a major current approach.
- (b)
- Artificial intelligence should be paid more and more attention to for solving the cross-talking problems, such as solving the multi-parameter cross-sensitivity by combining artificial intelligence and machine learning. Traditionally, these problems were solved by using additional sensing elements to measure the interference parameter. Using artificial intelligence, the effective signal could be separated from the mixed optical signals more cheaply and efficiently.
- (c)
- Development on the installation techniques is greatly desired. The installation of OFSs for deep-sea marine structures is very difficult due to the inapproachable deep-sea environment for human beings. For optical fiber point sensors, the combination of OFSs and ROV for measurement will be the trend in the marine SHM field; for quasi-distributed and distributed fiber sensors, seismo-acoustic sensors using existing fiber optic seafloor telecom cables have great potential. Combining FOSs with existing submarine cables is a growing trend.
- (d)
- There are also many perturbations in the harsh ocean environment, especially the external damage caused from different sources. How to protect the fragile fibers from damage while bettering transfer deformation, vibration, and other information requires further improvements in fiber packaging technology.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sielski, R.A. Ship Structural Health Monitoring Research at the Office of Naval Research. JOM 2012, 64, 823–827. [Google Scholar] [CrossRef]
- Cheung, M.S.; Tadros, G.S.; Brown, T.; Dilger, W.H.; Ghali, A.; Lau, D.T. Field Monitoring and Research on Performance of the Confederation Bridge. Can. J. Civ. Eng. 1997, 24, 951–962. [Google Scholar] [CrossRef]
- Yan, Y.; Mao, X.; Wang, X.; Yu, X.; Fang, L. Design and Implementation of a Structural Health Monitoring System for a Large Sea-Crossing Project with Bridges and Tunnel. Shock Vib. 2019, 2019, 2832089. [Google Scholar] [CrossRef]
- Prabowo, A.R.; Tuswan, T.; Ridwan, R. Advanced Development of Sensors’ Roles in Maritime-based Industry and Research: From Field Monitoring to High-risk Phenomenon Measurement. Appl. Sci. 2021, 11, 3954. [Google Scholar] [CrossRef]
- Demetgul, M.; Senyurek, V.Y.; Uyandik, R.; Tansel, I.N.; Yazicioglu, O. Evaluation of the Health of Riveted Joints with Active and Passive Structural Health Monitoring Techniques. Measurement 2015, 69, 42–51. [Google Scholar] [CrossRef]
- Arjun, V.; Sasi, B.; Rao, B.P.C.; Mukhopadhyay, C.K.; Jayakumar, T. Optimisation of Pulsed Eddy Current Probe for Detection of Sub-Surface Defects in Stainless Steel Plates. Sens. Actuators A Phys. 2015, 226, 69–75. [Google Scholar] [CrossRef]
- Li, F.; Peng, H.; Meng, G. Quantitative Damage Image Construction in Plate Structures Using a Circular PZT Array and Lamb Waves. Sens. Actuators A Phys. 2014, 214, 66–73. [Google Scholar] [CrossRef]
- Li, X.D.; Li, S.L.; Zhong, S.L.; Ge, S. Comparison Analysis of Fiber Bragg Grating and Resistance Strain Gauge Used in Quayside Container Crane Structural Health Monitoring. Appl. Mech. Mater. 2013, 330, 485–493. [Google Scholar] [CrossRef]
- Qing, X.P.; Chan, H.L.; Beard, S.J.; Ooi, T.K.; Marotta, S.A. Effect of Adhesive on the Performance of Piezoelectric Elements Used to Monitor Structural Health. Int. J. Adhes. Adhes. 2006, 26, 622–628. [Google Scholar] [CrossRef]
- Zou, F.; Benedetti, I.; Aliabadi, M.H. A Boundary Element Model for Structural Health Monitoring Using Piezoelectric Transducers. Smart Mater. Struct. 2014, 23, 015022. [Google Scholar] [CrossRef]
- Leung, C.K.Y.; Wan, K.T.; Inaudi, D.; Bao, X.; Habel, W.; Zhou, Z.; Ou, J.; Ghandehari, M.; Wu, H.C.; Imai, M. Review: Optical Fiber Sensors for Civil Engineering Applications. Mater. Struct. Constr. 2015, 48, 871–906. [Google Scholar] [CrossRef]
- Rajeev, P.; Kodikara, J.; Chiu, W.K.; Kuen, T. Distributed Optical Fibre Sensors and Their Applications in Pipeline Monitoring. Key Eng. Mater. 2013, 558, 424–434. [Google Scholar] [CrossRef]
- García, I.; Zubia, J.; Durana, G.; Aldabaldetreku, G.; Illarramendi, M.A.; Villatoro, J. Optical Fiber Sensors for Aircraft Structural Health Monitoring. Sensors 2015, 15, 15494–15519. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shang, Y.; Liu, X.-H.; Wang, C.; Yu, H.-H.; Jiang, D.-S.; Peng, G.-D. Distributed OTDR-Interferometric Sensing Network with Identical Ultra-Weak Fiber Bragg Gratings. Opt. Express 2015, 23, 29038–29046. [Google Scholar] [CrossRef]
- Tan, C.H.; Shee, Y.G.; Yap, B.K.; Adikan, F.R.M. Fiber Bragg Grating Based Sensing System: Early Corrosion Detection for Structural Health Monitoring. Sens. Actuators A Phys. 2016, 246, 123–128. [Google Scholar] [CrossRef]
- Hong, C.Y.; Zhang, Y.F.; Li, G.W.; Zhang, M.X.; Liu, Z.X. Recent Progress of Using Brillouin Distributed Fiber Optic Sensors for Geotechnical Health Monitoring. Sens. Actuators A Phys. 2017, 258, 131–145. [Google Scholar] [CrossRef]
- Pei, H.-F.; Yin, J.-H.; Jin, W. Development of Novel Optical Fiber Sensors for Measuring Tilts and Displacements of Geotechnical Structures. Meas. Sci. Technol. 2013, 24, 095202. [Google Scholar] [CrossRef]
- Villalba, S.; Casas, J.R. Application of Optical Fiber Distributed Sensing to Health Monitoring of Concrete Structures. Mech. Syst. Signal Process. 2013, 39, 441–451. [Google Scholar] [CrossRef]
- Di Sante, R. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications. Sensors 2015, 15, 18666–18713. [Google Scholar] [CrossRef]
- Ye, X.W.; Su, Y.H.; Han, J.P. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review. Sci. World J. 2014, 2014, 652329. [Google Scholar] [CrossRef]
- Rodríguez, G.; Casas, J.R.; Villalba, S. SHM by DOFS in Civil Engineering: A Review. Struct. Monit. Maint. 2015, 2, 357–382. [Google Scholar] [CrossRef]
- Kumari, C.R.U.; Samiappan, D.; Kumar, R.; Sudhakar, T. Fiber Optic Sensors in Ocean Observation: A Comprehensive Review. Optik 2019, 179, 351–360. [Google Scholar] [CrossRef]
- Cui, H.; Yu, M.; Chang, T.; Chen, J.; Zhao, E.; Zheng, Y.; Liu, Y.; Zhou, T. Fiber Optic Sensing Technology for Applications in Marine Environment and Marine Engineering. Jilin Daxue Xuebao (Diqiu Kexue Ban)/J. Jilin Univ. (Earth Sci. Ed.) 2017, 47, 279–293. [Google Scholar]
- Min, R.; Liu, Z.; Pereira, L.; Yang, C.; Sui, Q.; Marques, C. Optical Fiber Sensing for Marine Environment and Marine Structural Health Monitoring: A Review. Opt. Laser Technol. 2021, 140, 107082. [Google Scholar] [CrossRef]
- Hecht, J. The Remarkable Fiber Optic Vision of Charles Kao. Opt. Photonics News 2019, 30, 26–33. [Google Scholar] [CrossRef]
- Zhao, Y.; Tong, R.; Xia, F.; Peng, Y. Current Status of Optical Fiber Biosensor Based on Surface Plasmon Resonance. Biosens. Bioelectron. 2019, 142, 111505. [Google Scholar] [CrossRef] [PubMed]
- Minakuchi, S.; Takeda, N. Recent Advancement in Optical Fiber Sensing for Aerospace Composite Structures. Photonic Sensors 2013, 3, 345–354. [Google Scholar] [CrossRef]
- Zhang, Y.; Keiser, G.; Marzinsky, C.; Schilowitz, A.M.; Song, L.; Herhold, A.B. Applications of Optical Fiber Sensors in the Oil Refining and Petrochemical Industries. In Proceedings of the IEEE Sensors, Limerick, Ireland, 28–31 October 2011; pp. 246–249. [Google Scholar]
- Teague, J.; Allen, M.J.; Scott, T.B. The Potential of Low-Cost ROV for Use in Deep-Sea Mineral, Ore Prospecting and Monitoring. Ocean Eng. 2018, 147, 333–339. [Google Scholar] [CrossRef]
- Roriz, P.; Frazão, O.; Lobo-Ribeiro, A.B.; Santos, J.L.; Simões, J.A. Review of Fiber-Optic Pressure Sensors for Biomedical and Biomechanical Applications. J. Biomed. Opt. 2013, 18, 050903. [Google Scholar] [CrossRef]
- Gupta, S.; Mizunami, T.; Yamao, T.; Shimomura, T. Fiber Bragg Grating Cryogenic Temperature Sensors. Appl. Opt. 1996, 35, 5202–5205. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, L.; Xiang, P. Improving the Durability of the Optical Fiber Sensor Based on Strain Transfer Analysis. Opt. Fiber Technol. 2018, 42, 97–104. [Google Scholar] [CrossRef]
- Hong, C.-Y.; Zhang, Y.-F.; Zhang, M.-X.; Leung, L.M.G.; Liu, L.-Q. Application of FBG Sensors for Geotechnical Health Monitoring, a Review of Sensor Design, Implementation Methods and Packaging Techniques. Sens. Actuators A Phys. 2016, 244, 184–197. [Google Scholar] [CrossRef]
- Riza, M.A.; Go, Y.I.; Harun, S.W.; Maier, R.R.J. FBG Sensors for Environmental and Biochemical Applications—A Review. IEEE Sens. J. 2020, 20, 7614–7627. [Google Scholar] [CrossRef]
- Zhu, T.; Wu, D.; Liu, M.; Duan, D.W. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers. Sensors 2012, 12, 10430–10449. [Google Scholar] [CrossRef]
- Huang, Y.W.; Tao, J.; Huang, X.G. Research Progress on F-P Interference-Based Fiber-Optic Sensors. Sensors 2016, 16, 1424. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, H.; Lv, R.Q.; Zhao, J. Review of Optical Fiber Mach–Zehnder Interferometers with Micro-Cavity Fabricated by Femtosecond Laser and Sensing Applications. Opt. Lasers Eng. 2019, 117, 7–20. [Google Scholar] [CrossRef]
- Kersey, A.D.; Davis, M.A.; Berkoff, T.A.; Bellemore, D.G.; Koo, K.P.; Jones, R.T. Progress toward the Development of Practical Fiber Bragg Grating Instrumentation Systems. Fiber Opt. Laser Sensors XIV 1996, 2839, 40–63. [Google Scholar]
- Zhou, D.-P.; Qin, Z.; Li, W.; Chen, L.; Bao, X. Distributed Vibration Sensing with Time-Resolved Optical Frequency-Domain Reflectometry. Opt. Express 2012, 20, 13138–13145. [Google Scholar] [CrossRef]
- Soller, B.J.; Gifford, D.K.; Wolfe, M.S.; Froggatt, M.E. High Resolution Optical Frequency Domain Reflectometry for Characterization of Components and Assemblies. Opt. Express 2005, 13, 666–674. [Google Scholar] [CrossRef]
- Rogers, A.J. Polarisation Optical Time Domain Reflectometry. Electron. Lett. 1980, 16, 489–490. [Google Scholar] [CrossRef]
- Liokumovich, L.B.; Ushakov, N.A.; Kotov, O.I.; Bisyarin, M.A.; Hartog, A.H. Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model under Static Fiber Conditions. J. Light. Technol. 2015, 33, 3660–3671. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Yang, J.; Zhang, Y.; Ren, C. Microfiber Fabry-Perot Interferometer Used as a Temperature Sensor and an Optical Modulator. Opt. Laser Technol. 2020, 129, 106296. [Google Scholar] [CrossRef]
- Gao, S.; Ji, C.; Ning, Q.; Chen, W.; Li, J. High-Sensitive Mach-Zehnder Interferometric Temperature Fiber-Optic Sensor Based on Core-Offset Splicing Technique. Opt. Fiber Technol. 2020, 56, 102202. [Google Scholar] [CrossRef]
- Osaka, K.; Kaku, K.; Kosaka, T.; Sawada, Y. 2505 Health Monitoring for FRP Adhesively Bonded Joints with Michelson Optical Fiber Interferometer Sensor. Proc. JSME Annu. Meet. 2007, 2007.6, 211–212. [Google Scholar] [CrossRef]
- Gan, J.; Shen, L.; Ye, Q.; Pan, Z.; Cai, H.; Qu, R. Orientation-Free Pressure Sensor Based on π-Shifted Single-Mode-Fiber Sagnac Interferometer. Appl. Opt. 2010, 49, 5043–5048. [Google Scholar] [CrossRef]
- Culshaw, B. The Optical Fibre Sagnac Interferometer: An Overview of Its Principles and Applications. Meas. Sci. Technol. 2006, 17, R1–R16. [Google Scholar] [CrossRef]
- Her, S.C.; Yang, C.M. Dynamic Strain Measured by Mach-Zehnder Interferometric Optical Fiber Sensors. Sensors 2012, 12, 3314–3326. [Google Scholar] [CrossRef]
- Yuan, D.; Dong, Y.; Liu, Y.; Li, T. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section. Sensors 2015, 15, 21500–21517. [Google Scholar] [CrossRef]
- Zhang, T.; Pang, F.; Liu, H.; Cheng, J.; Lv, L.; Zhang, X.; Chen, N.; Wang, T. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System. Sensors 2016, 16, 2026. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.S.H.; Barnes, J.; Bock, W.; Greig, P.; Fraser, J.M.; Loock, H.P.; Oleschuk, R.D. Refractive Index Sensing with Mach-Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers. IEEE Photonics Technol. Lett. 2008, 20, 626–628. [Google Scholar] [CrossRef]
- Mathew, J.; Semenova, Y.; Farrell, G. Relative Humidity Sensor Based on an Agarose-Infiltrated Photonic Crystal Fiber Interferometer. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1553–1559. [Google Scholar] [CrossRef]
- Soltanian, M.R.K.; Sharbirin, A.S.; Ariannejad, M.M.; Amiri, I.S.; De La Rue, R.M.; Brambilla, G.; Rahman, B.M.A.; Grattan, K.T.V.; Ahmad, H. Variable Waist-Diameter Mach-Zehnder Tapered-Fiber Interferometer as Humidity and Temperature Sensor. IEEE Sens. J. 2016, 16, 5987–5992. [Google Scholar] [CrossRef]
- Talataisong, W.; Wang, D.N.; Chitaree, R.; Liao, C.R.; Wang, C. Fiber In-Line Mach–Zehnder Interferometer Based on an Inner Air-Cavity for High-Pressure Sensing. Opt. Lett. 2015, 40, 1220–1222. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, J.; Liao, Y.; Wang, X.; Wang, S. All-Fiber Mach–Zehnder Interferometer for Tunable Two Quasi-Continuous Points’ Temperature Sensing in Seawater. Opt. Express 2018, 26, 12277–12290. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-h.; Shi, Y.-k.; Shan, N.; Yuan, X.-q. Stabilized Fiber-Optic Extrinsic Fabry-Perot Sensor System for Acoustic Emission Measurement. Opt. Laser Technol. 2008, 40, 874–880. [Google Scholar] [CrossRef]
- Tran, T.A.; Miller, W.V.; Murphy, K.A.; Vengsarkar, A.M.; Claus, R.O. Stabilized Extrinsic Fiber-Optic Fizeau Sensor for Surface Acoustic Wave Detection. J. Light. Technol. 1992, 10, 1499–1506. [Google Scholar] [CrossRef]
- Ma, W.; Jiang, Y.; Zhang, H.; Zhang, L.; Hu, J.; Jiang, L. Miniature On-Fiber Extrinsic Fabry-Perot Interferometric Vibration Sensors Based on Micro-Cantilever Beam. Nanotechnol. Rev. 2019, 8, 293–298. [Google Scholar] [CrossRef]
- Chen, Z.; Yuan, L.; Hefferman, G.; Wei, T. Ultraweak Intrinsic Fabry-Perot Cavity Array for Distributed Sensing. Opt. Lett. 2015, 40, 320–323. [Google Scholar] [CrossRef]
- Kim, D.H.; Koo, B.Y.; Kim, C.G.; Hong, C.S. Damage Detection of Composite Structures Using a Stabilized Extrinsic Fabry-Perot Interferometric Sensor System. Smart Mater. Struct. 2004, 13, 593–598. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, Y.; Luo, X.; Liu, G.; Han, M. Acoustic Emission Sensor System Using a Chirped Fiber-Bragg-Grating Fabry-Perot Interferometer and Smart Feedback Control. Opt. Lett. 2017, 42, 631–634. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, F.; Song, L.; Wang, X.; Wang, A. Multiplexed Fiber Fabry-Pérot Interferometer Sensors Based on Ultrashort Bragg Gratings. IEEE Photonics Technol. Lett. 2007, 19, 622–624. [Google Scholar] [CrossRef]
- Woodward, S.L.; Stayt, J.W.; Romero, D.M.; Freund, J.M.; Przybylek, G.J. A Study of Optical Beat Interference between Fabry-Perot Lasers. IEEE Photonics Technol. Lett. 1998, 10, 731–733. [Google Scholar] [CrossRef]
- Mandel, P.; Georgiou, M.; Otsuka, K.; Pieroux, D. Transient and Modulation Dynamics of a Multimode Fabry-Pérot Laser. Opt. Commun. 1993, 100, 341–350. [Google Scholar] [CrossRef]
- Xu, Z.; Wen, Y.J.; Zhong, W.-D.; Chae, C.-J.; Cheng, X.-F.; Wang, Y.; Lu, C.; Shankar, J. High-Speed WDM-PON Using CW Injection-Locked Fabry-Pérot Laser Diodes. Opt. Express 2007, 15, 2953–2962. [Google Scholar] [CrossRef] [PubMed]
- Kersey, A.D.; Jackson, D.A.; Corke, M. A Simple Fibre Fabry-Perot Sensor. Opt. Commun. 1983, 45, 71–74. [Google Scholar] [CrossRef]
- Pevec, S.; Donlagic, D. All-Fiber, Long-Active-Length Fabry-Perot Strain Sensor. Opt. Express 2011, 19, 15641–15651. [Google Scholar] [CrossRef]
- Yoshino, T.; Ose, T.; Kurosawa, K.; Itoh, K. Fiber-Optic Fabry–Perot Interferometer and Its Sensor Applications. IEEE Trans. Microw. Theory Tech. 1982, 30, 1612–1621. [Google Scholar] [CrossRef]
- Lu, P.; Men, L.; Sooley, K.; Chen, Q. Tapered Fiber Mach–Zehnder Interferometer for Simultaneous Measurement of Refractive Index and Temperature. Appl. Phys. Lett. 2009, 94, 131110. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, D.; Wang, J.; Liu, H. Distributed Fiber-Optic Vibration Sensor Using a Ring Mach-Zehnder Interferometer. Opt. Commun. 2008, 281, 1538–1544. [Google Scholar] [CrossRef]
- Available online: http://www.optiphase.com/ (accessed on 31 December 2022).
- Available online: https://www.thorlabschina.cn/ (accessed on 31 December 2022).
- Available online: www.lunainc.com (accessed on 31 December 2022).
- Available online: https://fiso.com/en/service/life-sciences/ (accessed on 31 December 2022).
- Marra, G.; Clivati, C.; Luckett, R.; Tampellini, A.; Kronjäger, J.; Wright, L.; Mura, A.; Levi, F.; Robinson, S.; Xuereb, A.; et al. Ultrastable Laser Interferometry for Earthquake Detection with Terrestrial and Submarine Cables. Science 2018, 361, 486–490. [Google Scholar] [CrossRef]
- Qi, X.; Wu, W.; Wang, S.; Jiang, J.; Jia, W.; Che, Y.; Li, R.; Liu, T. Miniaturized Fiber Optic Fabry-Perot Pressure Measuring System Used for Marine Pressure Measurement. In Advanced Sensor Systems and Applications IX; SPIE: Hangzhou, China, 2019; Volume 11191, pp. 33–38. [Google Scholar]
- Duraibabu, D.B.; Poeggel, S.; Omerdic, E.; Kalli, K.; Capocci, R.; Lacraz, A.; Dooly, G.; Lewis, E.; Newe, T.; Leen, G.; et al. Novel Miniature Pressure and Temperature Optical Fibre Sensor Based on an Extrinsic Fabry-Perot Interferometer (EFPI) and Fibre Bragg Gratings (FBG) for the Ocean Environment. In Proceedings of the SENSORS, 2014 IEEE, Valencia, Spain, 2–5 November 2014; pp. 394–397. [Google Scholar]
- Liu, Z.; Zeng, L.; Xu, K.; Wu, Q.; Shu, Y.; Liao, X.; Li, Z.; Chen, H.; Qiao, Z.; Qu, Y.; et al. Structure Design of Disposable Ocean Temperature Depth Sensing Probe Based on F-P Cavity and FBG. J. Appl. Math. Phys. 2021, 09, 2947–2953. [Google Scholar] [CrossRef]
- Jin, M.; Ge, H.; Li, D.; Ni, C. Three-Component Homovibrational Vector Hydrophone Based on Fiber Bragg Grating F-P Interferometry. Appl. Opt. 2018, 57, 9195–9202. [Google Scholar] [CrossRef] [PubMed]
- Kilic, O.; Digonnet, M.; Kino, G.; Solgaard, O. Photonic-Crystal-Diaphragm-Based Fiber-Tip Hydrophone Optimized for Ocean Acoustics. In Proceedings of the 19th International Conference on Optical Fibre Sensors, Perth, Australia, 15–18 April 2008; Volume 7004, pp. 37–40. [Google Scholar]
- Gao, F.; Zhang, H.; Li, Y.; Wei, J.; Wang, M. Research on Online Monitoring System of Submarine Cable Based on Bidirectional Mach Zehnder Interferometer. In Proceedings of the International Conference on Optoelectronic and Microelectronic Technology and Application, Nanjing, China, 20–22 October 2020; pp. 584–589. [Google Scholar]
- Xie, S.; Zhang, M.; Lai, S.; Liao, Y. Positioning Method for Dual Mach-Zehnder Interferometric Submarine Cable Security System. Fiber Opt. Sensors Appl. VII 2010, 7677, 80–83. [Google Scholar]
- Fan, X.M.; Wang, Y.J.; Wang, G.L.; Shu, C.; Li, C.G. Foresight on Real-Time Monitoring System for Submarine Optical Fiber Cables Based on Fiber Sensing Technology. Appl. Mech. Mater. 2013, 341–342, 1089–1093. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, X.M.; Yuan, F.; Hao, H.B. The Research and Design of Monitoring System for Submarine Cables. Appl. Mech. Mater. 2015, 713–715, 534–538. [Google Scholar] [CrossRef]
- Huang, S.C.; Lin, W.W.; Tsai, M.T.; Chen, M.H. Fiber Optic In-Line Distributed Sensor for Detection and Localization of the Pipeline Leaks. Sens. Actuators A Phys. 2007, 135, 570–579. [Google Scholar] [CrossRef]
- Aref, S.H.; Latifi, H.; Zibaii, M.I.; Afshari, M. Fiber Optic Fabry-Perot Pressure Sensor with Low Sensitivity to Temperature Changes for Downhole Application. Opt. Commun. 2007, 269, 322–330. [Google Scholar] [CrossRef]
- Aref, S.H.; Zibaii, M.I.; Latifi, H. An Improved Fiber Optic Pressure and Temperature Sensor for Downhole Application. Meas. Sci. Technol. 2009, 20, 034009. [Google Scholar] [CrossRef]
- Mizutani, A.; Yomogida, K.; Tanioka, Y. Early Tsunami Detection with Near-Fault Ocean-Bottom Pressure Gauge Records Based on the Comparison with Seismic Data. J. Geophys. Res. Ocean. 2020, 125, e2020JC016275. [Google Scholar] [CrossRef]
- Ismail, N.; Hafizi, Z.M.; Ooi, C.-W.; Bin Zaini, M.K.A.; Nizwan, C.K.E.; Lim, K.-S.; Ahmad, H. Fiber Bragg Grating-Based Fabry-Perot Interferometer Sensor for Damage Detection on Thin Aluminum Plate. IEEE Sens. J. 2020, 20, 3564–3571. [Google Scholar] [CrossRef]
- Xu, C.; Sharif Khodaei, Z. A Novel Fabry-Pérot Optical Sensor for Guided Wave Signal Acquisition. Sensors 2020, 20, 1728. [Google Scholar] [CrossRef] [PubMed]
- Kringlebotn, J.T.; Nakstad, H.; Eriksrud, M. Fibre Optic Ocean Bottom Seismic Cable System: From Innovation to Commercial Success. In Proceedings of the 20th International Conference on Optical Fibre Sensors, Edinburgh, UK, 5–9 October 2009; Volume 7503, p. 75037U. [Google Scholar]
- Available online: https://en.wikipedia.org/wiki/submarine_power_cable (accessed on 31 December 2022).
- Available online: https://www.admie.gr/en/nea/deltia-typoy/crete-peloponnese-record-breaking-interconnection-completed (accessed on 31 December 2022).
- Worzyk, T. Submarine Power Cables: Design, Installation, Repair, Environmental Aspects; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Meltz, G.; Morey, W.W.; Glenn, W.H. Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method. Opt. Lett. 1989, 14, 823–825. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, R.; Lopez-Higuera, J.M. Fiber Grating Technology: Theory, Photosensitivity, Fabrication and Characterization. In Handbook of Optical Fibre Sensing Technology; Wiley: New York, NY, USA, 2002; pp. 349–374. [Google Scholar]
- Lopez-Amo, M.; Lopez-Higuera, J.M. Multiplexing Techniques for FBG Sensors. In Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation; Bentham Science Publishers: Sharjah, United Arab Emirates, 2011; pp. 99–115. [Google Scholar]
- Chaoui, F.; Aghzout, O.; Chakkour, M.; El Yakhloufi, M. Apodization Optimization of FBG Strain Sensor for Quasi-Distributed Sensing Measurement Applications. Act. Passiv. Electron. Components 2016, 2016, 6523046. [Google Scholar] [CrossRef]
- Davis, M.A.; Kersey, A.D. All-Fibre Bragg Grating Strain-Sensor Demodulation Technique Using a Wavelength Division Coupler. Electron. Lett. 1994, 30, 75–77. [Google Scholar] [CrossRef]
- Morey, W.W.; Meltz, G.; Glenn, W.H. Fiber Optic Bragg Grating Sensors. In Fiber Optic and Laser Sensors VII; SPIE: Boston, MA, USA, 1990; Volume 1169, pp. 98–107. [Google Scholar]
- Melle, S.; Liu, K.; Measures, R.M. Strain Sensing Using a Fiber-Optic Bragg Grating. In Fiber Optic Smart Structures and Skins IV; SPIE: Boston, MA, USA, 1991; Volume 1588, pp. 255–263. [Google Scholar]
- Huang, S.; LeBlanc, M.; Ohn, M.M.; Measures, R.M. Bragg Intragrating Structural Sensing. Appl. Opt. 1995, 34, 5003–5009. [Google Scholar] [CrossRef]
- Available online: https://roctest.com/en/products/ (accessed on 31 December 2022).
- Available online: www.hbm.com/cn (accessed on 31 December 2022).
- Torres, B.; Payá-Zaforteza Ignacio, I.; Calderón, P.A.; Adam, J.M. Analysis of the Strain Transfer in a New FBG Sensor for Structural Health Monitoring. Eng. Struct. 2011, 33, 539–548. [Google Scholar] [CrossRef]
- Lau, K.T. Structural Health Monitoring for Smart Composites Using Embedded FBG Sensor Technology. Mater. Sci. Technol. 2014, 30, 1642–1654. [Google Scholar] [CrossRef]
- Čápová, K.; Velebil, L.; Včelák, J.; Dvořák, M.; Šašek, L. Environmental Testing of a FBG Sensor System for Structural Health Monitoring of Building and Transport Structures. Procedia Struct. Integr. 2019, 17, 726–733. [Google Scholar] [CrossRef]
- Shimada, Y.; Nishimura, A. Development of Optical Fiber Bragg Grating Sensors for Structural Health Monitoring. J. Laser Micro Nanoeng. 2013, 8, 110–114. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, Y.; Yuan, M.; Wang, J.; Zhu, S. A Laser-Based Fiber Bragg Grating Ultrasonic Sensing System for Structural Health Monitoring. IEEE Photonics Technol. Lett. 2016, 28, 2573–2576. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, P.; Liang, D.; Fan, C.; Li, C. A Soft Self-Repairing for FBG Sensor Network in SHM System Based on PSO-SVR Model Reconstruction. Opt. Commun. 2015, 343, 38–46. [Google Scholar] [CrossRef]
- Mieloszyk, M.; Ostachowicz, W. An Application of Structural Health Monitoring System Based on FBG Sensors to Offshore Wind Turbine Support Structure Model. Mar. Struct. 2017, 51, 65–86. [Google Scholar] [CrossRef]
- Tosi, D. Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications. Sensors 2018, 18, 2147. [Google Scholar] [CrossRef] [PubMed]
- Čápová, K.; Velebil, L.; Včelák, J. Laboratory and In-Situ Testing of Integrated FBG Sensors for SHM for Concrete and Timber Structures. Sensors 2020, 20, 1661. [Google Scholar] [CrossRef]
- Ferdinand, P. The Evolution of Optical Fiber Sensors Technologies during the 35 Last Years and Their Applications in Structural Health Monitoring. In Proceedings of the 7th European Workshop on Structural Health Monitoring, EWSHM 2014—2nd European Conference of the Prognostics and Health Management (PHM) Society, Nantes, France, 8–11 June 2014; pp. 914–929. [Google Scholar]
- Xu, J.; Yang, D.; Qin, C.; Jiang, Y.; Sheng, L.; Jia, X.; Bai, Y.; Shen, X.; Wang, H.; Deng, X. Study and Test of a New Bundle-Structure Riser Stress Monitoring Sensor Based on FBG. Sensors 2015, 15, 29648–29660. [Google Scholar] [CrossRef]
- Kumar, S.; Bedi, A.; Kothari, V. Design and Analysis of FBG Based Sensor for Detection of Damage in Oil and Gas Pipelines for Safety of Marine Life. In Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVIII; SPIE: San Francisco, CA, USA, 2018; pp. 146–151. [Google Scholar]
- Jiang, C.L.; Yan, T.J.; Song, M.C.; Shi, J.L. Application of Fiber Bragg Grating Sensing Technology in Key Equipment Monitoring of Offshore Platform. In Proceedings of the 2020 2nd International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 23–25 October 2020; pp. 1–6. [Google Scholar]
- Ren, L. Health Monitoring System for Offshore Platform with Fiber Bragg Grating Sensors. Opt. Eng. 2006, 45, 084401. [Google Scholar] [CrossRef]
- Wang, T.; Yuan, Z.; Gong, Y.; Wu, Y.; Rao, Y.; Wei, L.; Guo, P.; Wang, J.; Wan, F. Fiber Bragg Grating Strain Sensors for Marine Engineering. Photonic Sensors 2013, 3, 267–271. [Google Scholar] [CrossRef]
- Qiao, X.; Fiddy, M.A. Distributed Optical Fiber Bragg Grating Sensor for Simultaneous Measurement of Pressure and Temperature in the Oil and Gas Downhole. In Active and Passive Optical Components for WDM Communications II; SPIE: Boston, MA, USA, 2002; Volume 4870, pp. 554–558. [Google Scholar]
- Butov, O.V.; Golant, K.M.; Grifer, V.I.; Gusev, Y.V.; Kholodkov, A.V.; Lanin, A.V.; Maksutov, R.A.; Orlov, G.I. Versatile In-Fiber Bragg Grating Pressure Sensor for Oil and Gas Industry. In Optical Fiber Sensors; OSA: Washington, DC, USA, 2006; p. TuB6. [Google Scholar]
- Zhang, Y.Z.; Xiao, L.Z.; Wang, J.Y. Oil Well Real-Time Monitoring with Downhole Permanent FBG Sensor Network. In Proceedings of the 2007 IEEE International Conference on Control and Automation, Guangzhou, China, 30 May–1 June 2007; pp. 2591–2594. [Google Scholar]
- Li, D.; Li, H.; Ren, L.; Sun, L.; Zhou, J. Experiments on an Offshore Platform Model by FBG Sensors. In Proceedings of the Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA, USA, 15–18 March 2004; Volume 5391, pp. 100–106. [Google Scholar]
- Li, H.C.H.; Herszberg, I.; Davis, C.E.; Mouritz, A.P.; Galea, S.C. Health Monitoring of Marine Composite Structural Joints Using Fibre Optic Sensors. Compos. Struct. 2006, 75, 321–327. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, L.; Li, H. Study on Dynamic Response Measurement of the Submarine Pipeline by Full-Term FBG Sensors. Sci. World J. 2014, 2014, 808075. [Google Scholar] [CrossRef]
- Razali, N.F.; Abu Bakar, M.H.; Tamchek, N.; Yaacob, M.H.; Latif, A.A.; Zakaria, K.; Mahdi, M.A. Fiber Bragg Grating for Pressure Monitoring of Full Composite Lightweight Epoxy Sleeve Strengthening System for Submarine Pipeline. J. Nat. Gas Sci. Eng. 2015, 26, 135–141. [Google Scholar] [CrossRef]
- Cabral, T.D.; Zimmermann, A.C.; Willemann, D.P.; Gonçalves, A.A., Jr. Pipeline Bonded Joints Assembly and Operation Health Monitoring with Embedded FBG Sensors. Eng. Proc. 2020, 2, 5. [Google Scholar]
- Rodrigues, C.; Félix, C.; Lage, A.; Figueiras, J. Development of a Long-Term Monitoring System Based on FBG Sensors Applied to Concrete Bridges. Eng. Struct. 2010, 32, 1993–2002. [Google Scholar] [CrossRef]
- Lin, Y.B.; Chen, J.C.; Chang, K.C.; Chern, J.C.; Lai, J.S. Real-Time Monitoring of Local Scour by Using Fiber Bragg Grating Sensors. Smart Mater. Struct. 2005, 14, 664–670. [Google Scholar] [CrossRef]
- Lin, Y.B.; Lai, J.S.; Chang, K.C.; Li, L.S. Flood Scour Monitoring System Using Fiber Bragg Grating Sensors. Smart Mater. Struct. 2006, 15, 1950–1959. [Google Scholar] [CrossRef]
- Hu, D.; Guo, Y.; Chen, X.; Zhang, C. Cable Force Health Monitoring of Tongwamen Bridge Based on Fiber Bragg Grating. Appl. Sci. 2017, 7, 384. [Google Scholar] [CrossRef]
- Schulz, W.L.; Conte, J.P.; Udd, E.; Seim, J.M. Static and Dynamic Testing of Bridges and Highways Using Long-Gage Fiber Bragg Grating Based Strain Sensors. In Industrial Sensing Systems; SPIE: Boston, MA, USA, 2000; Volume 4202, pp. 79–86. [Google Scholar]
- Inaudi, D.; Ruefenacht, A.; von Arx, B.; Noher, H.P.; Vurpillot, S.; Glisic, B. Monitoring of a Concrete Arch Bridge during Construction. In Proceedings of the Smart Structures and Materials 2002: Smart Systems for Bridges, Structures, and Highways, San Diego, CA, USA, 28 June 2002; Volume 4696, pp. 146–153. [Google Scholar]
- Monsberger, C.; Klug, F.; Lienhart, W. Performance Assessment of a Fiber Bragg Grating Sensor Network inside a Hydro Power Dam Using Optical Backscatter Reflectometry. In Fiber Optic Sensors and Applications XIV; SPIE: Anaheim, CA, USA, 2017; Volume 10208, pp. 183–194. [Google Scholar]
- Fan, S.; Ren, L.; Chen, J. Investigation of Fiber Bragg Grating Strain Sensor in Dynamic Tests of Small-Scale Dam Model. Struct. Control Health Monit. 2015, 22, 1282–1293. [Google Scholar] [CrossRef]
- Luo, Y.X. Study of Fiber Bragg Grating Sensor in Dam Safety Monitoring. Appl. Mech. Mater. 2013, 312, 736–740. [Google Scholar] [CrossRef]
- Allil, R.C.S.B.; Lima, L.A.C.; Allil, A.S.; Werneck, M.M. Fbg-Based Inclinometer for Landslide Monitoring in Tailings Dams. IEEE Sens. J. 2021, 21, 16670–16680. [Google Scholar] [CrossRef]
- Komoriyama, Y.; Ota, D.; Ma, C.; Sawada, H.; Oka, M.; Matsui, S.; Houtani, H. Hull Structural Strength Evaluation Based on Fiber Bragg Gratings Pressure Sensors to Measure Spatial Pressure Distribution on Ship’s Hull in Waves. In Proceedings of the Volume 2A: Structures, Safety, and Reliability, American Society of Mechanical Engineers, Online, New York, NY, USA, 18 December 2020; Volume 2A-2020, p. V02AT02A023. [Google Scholar]
- Han, F.; Wang, Z.; Zhang, H.; Wang, D.; Li, W.; Cai, W. Experimental Study of Large-Temperature-Range and Long-Period Monitoring for LNG Marine Auxiliary Based on Fiber Bragg Grating Temperature Measurement. J. Mar. Sci. Eng. 2021, 9, 917. [Google Scholar] [CrossRef]
- Mercuri, A.; Fanelli, P.; Falcucci, G.; Ubertini, S.; Jannelli, E.; Biscarini, C. Analysis of Deformation in an Aluminium Hull Impacting Water Free Surface. Fluids 2022, 7, 49. [Google Scholar] [CrossRef]
- Wang, W.; Qiao, L.; Li, Y.; Yang, J.; Liu, C. A Hinged Fiber Grating Sensor for Hull Roll and Pitch Motion Measurement. In Lecture Notes in Electrical Engineering; Springer: Singapore, 2020; Volume 571, pp. 66–74. [Google Scholar]
- Zhang, H.H.; Feng, G.Q.; Ren, H.L.; Wang, Y.Z. Research on the Fatigue Health Monitoring System of the Hull Structure. In Proceedings of the International Offshore and Polar Engineering Conference, San Francisco, CA, USA, 25–30 June 2017; pp. 973–980. [Google Scholar]
- Shen, W.; Yan, R.; Xu, L.; Tang, G.; Chen, X. Application Study on FBG Sensor Applied to Hull Structural Health Monitoring. Optik 2015, 126, 1499–1504. [Google Scholar] [CrossRef]
- Sun, A.; Farrell, G.; Semenova, Y.; Chen, B.; Li, G.; Lin, Z. The Distributed Dynamic Combined-Stresses Measurement of Ship Thruster Inner-Skin Using Fiber Bragg Grating Sensor Rosette Array. Optik 2011, 122, 1779–1781. [Google Scholar] [CrossRef]
- Herszberg, I.; Li, H.C.H.; Dharmawan, F.; Mouritz, A.P.; Nguyen, M.; Bayandor, J. Damage Assessment and Monitoring of Composite Ship Joints. Compos. Struct. 2005, 67, 205–216. [Google Scholar] [CrossRef]
- Available online: https://fbgs.com/solutions/temperature-sensing/ (accessed on 31 December 2022).
- Available online: https://micronor.com/product/fisens-fbg-sensor-chains/ (accessed on 31 December 2022).
- Li, X.; Yang, Y.; Zhang, W.; Wang, Z.; Yuan, Y.; Hu, H.; Xu, D. An FBG Pressure Sensor Based on Spring-Diaphragm Elastic Structure for Ultimate Pressure Detection. IEEE Sens. J. 2022, 22, 2213–2220. [Google Scholar] [CrossRef]
- El-Gammal, H.M.; Ismail, N.E.; Rizk, M.R.M.; Aly, M.H. Strain Sensing in Underwater Acoustics with a Hybrid π-Shifted FBG and Different Interrogation Methods. Opt. Quantum Electron. 2022, 54, 226. [Google Scholar] [CrossRef]
- Ansari, F. State-of-the-Art in the Applications of Fiber-Optic Sensors to Cementitious Composites. Cem. Concr. Compos. 1997, 19, 3–19. [Google Scholar] [CrossRef]
- Tennyson, R.C.; Mufti, A.A.; Rizkalla, S.; Tadros, G.; Benmokrane, B. Structural Health Monitoring of Innovative Bridges in Canada with Fiber Optic Sensors. Smart Mater. Struct. 2001, 10, 560–573. [Google Scholar] [CrossRef]
- Lee, Z.-K.; Bonopera, M.; Hsu, C.-C.; Lee, B.-H.; Yeh, F.-Y. Long-Term Deflection Monitoring of a Box Girder Bridge with an Optical-Fiber, Liquid-Level System. Structures 2022, 44, 904–919. [Google Scholar] [CrossRef]
- Johnson, G.A.; Pran, K.; Sagvolden, G.; Farsund, O.; Havsgard, G.B.; Wang, G.; Jensen, A.E. Surface Effect Ship Vibro-Impact Monitoring with Distributed Arrays of Fiber Bragg Gratings. Proc. Int. Modal Anal. Conf.-IMAC 2000, 2, 1406–1411. [Google Scholar]
- Wang, Q.B.; Chen, J.A.; Fu, G.Y.; Duan, D.P. An Approach for Shape Optimization of Stratosphere Airships Based on Multidisciplinary Design Optimization. J. Zhejiang Univ. Sci. A 2009, 10, 1609–1616. [Google Scholar] [CrossRef]
- Young, A.T. Rayleigh scattering. Appl. Opt. 1981, 20, 533–535. [Google Scholar] [CrossRef]
- Hellwarth, R.W. Theory of Stimulated Raman Scattering. Phys. Rev. 1963, 130, 1850–1852. [Google Scholar] [CrossRef]
- Bao, X.; Dhliwayo, J.; Heron, N.; Webb, D.J.; Jackson, D.A. Experimental and Theoretical Studies on a Distributed Temperature Sensor Based on Brillouin Scattering. J. Light. Technol. 1995, 13, 1340–1348. [Google Scholar] [CrossRef]
- Li, J.; Gan, J.; Zhang, Z.; Heng, X.; Yang, C.; Qian, Q.; Xu, S.; Yang, Z. High Spatial Resolution Distributed Fiber Strain Sensor Based on Phase-OFDR. Opt. Express 2017, 25, 27913–27922. [Google Scholar] [CrossRef] [PubMed]
- Koyamada, Y.; Imahama, M.; Kubota, K.; Hogari, K. Fiber-Optic Distributed Strain and Temperature Sensing with Very High Measurand Resolution over Long Range Using Coherent OTDR. J. Light. Technol. 2009, 27, 1142–1146. [Google Scholar] [CrossRef]
- Muanenda, Y.; Oton, C.J.; Di Pasquale, F. Application of Raman and Brillouin Scattering Phenomena in Distributed Optical Fiber Sensing. Front. Phys. 2019, 7, 155. [Google Scholar] [CrossRef]
- Fujimori, H.; Kakihana, M.; Ioku, K.; Goto, S.; Yoshimura, M. Advantage of Anti-Stokes Raman Scattering for High-Temperature Measurements. Appl. Phys. Lett. 2001, 79, 937–939. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Li, H.; Fan, X. Global Temperature Sensing for an Operating Power Transformer Based on Raman Scattering. Sensors 2020, 20, 4903. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liu, D.; Liu, H.; Sun, Q.; Sun, Z.; Zhang, X.; Wang, W. Design of Distributed Raman Temperature Sensing System Based on Single-Mode Optical Fiber. Front. Optoelectron. China 2009, 2, 215–218. [Google Scholar] [CrossRef]
- Olbrycht, R. Distributed Temperature Sensing in Optical Fibers Based on Raman Scattering: Theory and Applications. Meas. Autom. Monit. 2017, 63, 41–44. [Google Scholar]
- Keller, C.A.; Huwald, H.; Vollmer, M.K.; Wenger, A.; Hill, M.; Parlange, M.B.; Reimann, S. Fiber Optic Distributed Temperature Sensing for the Determination of the Nocturnal Atmospheric Boundary Layer Height. Atmos. Meas. Tech. 2011, 4, 143–149. [Google Scholar] [CrossRef]
- Bao, X.; DeMerchant, M.; Brown, A.; Bremner, T. Tensile and Compressive Strain Measurement in the Lab and Field with the Distributed Brillouin Scattering Sensor. J. Light. Technol. 2001, 19, 1698–1704. [Google Scholar]
- Kurashima, T.; Horiguchi, T.; Tateda, M. Distributed-Temperature Sensing Using Stimulated Brillouin Scattering in Optical Silica Fibers. Opt. Lett. 1990, 15, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Available online: www.sensornet.co.uk (accessed on 31 December 2022).
- Available online: https://www.cn.neubrex.com/htm/technology/kouseido.htm (accessed on 31 December 2022).
- Available online: https://www.ozoptics.com/products/fiber_optic_distributed.html (accessed on 31 December 2022).
- Available online: https://smartec.ch/en/product/ditest-botdr-sr-5-km/ (accessed on 31 December 2022).
- Chen, Y.; Wang, S.; Hao, Y.; Yao, K.; Li, H.; Jia, F.; Yue, D.; Shi, Q.; Cheng, Y.; Huang, X. Temperature Monitoring for 500 KV Oil-Filled Submarine Cable Based on BOTDA Distributed Optical Fiber Sensing Technology: Method and Application. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Hao, Y.; Yao, K.; Li, H.; Jia, F.; Shi, Q.; Yue, D.; Cheng, Y. The 500 kV Oil-Filled Submarine Cable Temperature Monitoring System Based on BOTDA Distributed Optical Fiber Sensing Technology. In Proceedings of the 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), Xi’an, China, 15–17 October 2020; pp. 180–183. [Google Scholar]
- Huang, X.; Li, Y.; Wu, C.; Lin, D.; Liu, Z.; Chen, Y.; Li, X.; Zhang, W.; Cai, C. Temperature Online Monitoring of Submarine Cable Based on BOTDA and FOCT. In Proceedings of the 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), Beijing, China, 7–9 September 2019; pp. 1229–1233. [Google Scholar]
- Fouda, B.M.T.; Yang, B.; Han, D.; An, B. Pattern Recognition of Optical Fiber Vibration Signal of the Submarine Cable for Its Safety. IEEE Sens. J. 2021, 21, 6510–6519. [Google Scholar] [CrossRef]
- Feng, X.; Wu, W.; Li, X.; Zhang, X.; Zhou, J. Experimental Investigations on Detecting Lateral Buckling for Subsea Pipelines with Distributed Fiber Optic Sensors. Smart Struct. Syst. 2015, 15, 245–258. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Xu, Z.; Yang, Z.; Lü, A. On-Line Monitoring System of 110kV Submarine Cable Based on BOTDR. Sens. Actuators A Phys. 2014, 216, 28–35. [Google Scholar] [CrossRef]
- Fromme, M.; Christiansen, W.; Kjær, S.V.; Hill, W. Distributed Temperature Monitoring of Long Distance Submarine Cables. In Proceedings of the 21st International Conference on Optical Fiber Sensors, Ottawa, ON, Canada, 15–19 May 2011; Volume 7753, pp. 440–443. [Google Scholar]
- Jiang, Q.; Sui, Q. Technological Study on Distributed Fiber Sensor Monitoring of High Voltage Power Cable in Seafloor. In Proceedings of the 2009 IEEE International Conference on Automation and Logistics, Shenyang, China, 5–7 August 2009; pp. 1154–1157. [Google Scholar]
- Feo, G.; Sharma, J.; Kortukov, D.; Williams, W.; Ogunsanwo, T. Distributed Fiber Optic Sensing for Real-Time Monitoring of Gas in Riser during Offshore Drilling. Sensors 2020, 20, 267. [Google Scholar] [CrossRef]
- Michelin, F.; De Lacaze, P.; Lamour, V. Shape Monitoring of Subsea Pipelines through Optical Fiber Sensors: Slay Process Case Study. In Proceedings of the 22nd Offshore Symposium 2017—Redefining Offshore Development: Technologies and Solutions, Houston, TX, USA, 2 February 2017; pp. 187–193. [Google Scholar]
- Inaudi, D.; Glisic, B. Part 39: Civil Structural Health Monitoring. In Advances in Bridge Maintenance, Safety Management, and Life-Cycle Performance, Set of Book & CD-ROM; CRC Press: Boca Raton, FL, USA, 2015; pp. 999–1000. [Google Scholar]
- Pnev, A.B.; Zhirnov, A.A.; Stepanov, K.V.; Nesterov, E.T.; Shelestov, D.A.; Karasik, V.E. Mathematical Analysis of Marine Pipeline Leakage Monitoring System Based on Coherent OTDR with Improved Sensor Length and Sampling Frequency. In Proceedings of the International Scientific Seminars on Fundamental and Applied Problems of Photonics and Condensed Matter Physics, Moscow, Russia, 30 May–27 June 2014; Volume 584, p. 012016. [Google Scholar]
- Lim, K.; Wong, L.; Chiu, W.K.; Kodikara, J. Distributed Fiber Optic Sensors for Monitoring Pressure and Stiffness Changes in Out-of-Round Pipes. Struct. Control Health Monit. 2016, 23, 303–314. [Google Scholar] [CrossRef]
- Imai, M.; Mizuno, S. Aqueduct Tunnel Convergence Measurement Using a Distributed Optical Fiber Sensor. In Optical Fiber Sensors Conference 2020 Special Edition; OSA: Washington, DC, USA, 2021; p. T3.22. [Google Scholar]
- Wang, T.; Shi, B.; Zhu, Y. Structural Monitoring and Performance Assessment of Shield Tunnels during the Operation Period, Based on Distributed Optical-Fiber Sensors. Symmetry 2019, 11, 940. [Google Scholar] [CrossRef]
- Liang, R.; Mei, Y.; Yang, X.; Xu, J.; Zhang, J.; Qin, Q. Distributed Temperature Monitoring of a Pumped-Storage Power Station Rockfill Dam Using Optical Fiber Sensors. In Proceedings of the Eighth Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, China, 27 March 2022; pp. 828–833. [Google Scholar]
- Henault, J.-M.; Moreau, G.; Blairon, S.; Salin, J.; Courivaud, J.-R.; Taillade, F.; Merliot, E.; Dubois, J.-P.; Bertrand, J.; Buschaert, S.; et al. Truly Distributed Optical Fiber Sensors for Structural Health Monitoring: From the Telecommunication Optical Fiber Drawling Tower to Water Leakage Detection in Dikes and Concrete Structure Strain Monitoring. Adv. Civ. Eng. 2010, 2010, 930796. [Google Scholar] [CrossRef]
- Inaudi, D. Photonic Sensing Technology in Civil Engineering Applications. In Handbook of Optical Fibre Sensing Technology; Lopez-higuera, J.M., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002; pp. 517–542. [Google Scholar]
Monitoring Item | Sensors and Configuration | Variables | Authors | Year |
---|---|---|---|---|
Submarine earthquake | FP laser based on ultralow expansion cavity | Phase difference | Marra et al. [75] | 2018 |
Miniaturized FP pressure measuring system | Pressure | Qi et al. [76] | 2019 | |
Fiber vector hydrophone based on FP interferometry | Acoustic | Jin et al. [79] | 2018 | |
Damage of submarine cable | Bidirectional MZ interferometer | Vibration | Gao et al. [81] | 2020 |
Double MZ distributed optical fiber sensing system | Vibration | Wang et al. [84] | 2014 |
Monitoring Item | Sensors and Configuration | Variables | Authors | Year |
---|---|---|---|---|
Drilling platforms | FBG-based bundle-structure riser stress monitoring sensor | Stress | Xu et al. [115] | 2015 |
FBG sensors embedded into the joints’ adhesive layer | Strain | Cabral et al. [127] | 2020 | |
Bridges | FBG-based temperature and strain sensing arrays | Temperature/ Strain | Yan et al. [3] | 2019 |
FBG arrays based the theory of string vibration | Vibration | Hu et al. [131] | 2017 | |
Dams | FBG monitoring system using an optical backscatter reflectometer | Strain | Monsberger et al. [134] | 2017 |
FBG-based inclinometer arrays fixed along a flexible tube | Displacement | Regina et al. [137] | 2021 | |
Hulls | FBG sensors based on finite element analysis | Pressure/ Strain | Komoriyama et al. [138] | 2020 |
FBG sensors with temperature-sensitive metal coating materials | Temperature | Han et al. [139] | 2021 |
Monitoring Item | Sensors and Configuration | Variables | Authors | Year |
---|---|---|---|---|
Submarine cables | BOTDA distributed optical fiber monitoring system | Temperature | Chen et al. [172,173] | 2022 |
All-fiber BOTDA monitoring system | Temperature | Huang et al. [174] | 2019 | |
Phase-sensitive OTDR to detect vibration | Vibration | Fouda et al. [175] | 2021 | |
Oil and gas pipelines | DOFSs involving DTS and DAS | Temperature/ Acoustic | Feo et al. [180] | 2020 |
SensoluxTM sensor based on Raman and Brillouin OTDR | Strain/ Temperature | Cementys company [181] | 2017 | |
Tunnels | BOCDA-based optical fiber strain sensor | Strain | Imai et al. [185] | 2021 |
DOFSs based on Brillouin frequency shift | Displacement | Wang et al. [186] | 2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Wang, J.; Zhang, C.; Li, M.; Li, N.; Wu, H.; Liu, Y.; Peng, W.; Song, Y. Marine Structural Health Monitoring with Optical Fiber Sensors: A Review. Sensors 2023, 23, 1877. https://doi.org/10.3390/s23041877
Chen S, Wang J, Zhang C, Li M, Li N, Wu H, Liu Y, Peng W, Song Y. Marine Structural Health Monitoring with Optical Fiber Sensors: A Review. Sensors. 2023; 23(4):1877. https://doi.org/10.3390/s23041877
Chicago/Turabian StyleChen, Shimeng, Jiahui Wang, Chao Zhang, Mengqi Li, Na Li, Haojun Wu, Yun Liu, Wei Peng, and Yongxin Song. 2023. "Marine Structural Health Monitoring with Optical Fiber Sensors: A Review" Sensors 23, no. 4: 1877. https://doi.org/10.3390/s23041877