Modal Decomposition of Acoustic Emissions from Pencil-Lead Breaks in an Isotropic Thin Plate
Abstract
:1. Introduction
2. Methods
2.1. PLB Experiments
2.2. FEA Analysis
2.3. Theoretical Dispersion Curves
2.4. Validation of Method
3. Results and Discussion
3.1. Wavelet Transform Results
3.2. 2D FFT Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, J. Enhancing the Accuracy of Advanced High Temperature Mechanical Testing through Thermography. Appl. Sci. 2018, 8, 380. [Google Scholar] [CrossRef]
- Lee, C.K.; Scholey, J.J.; Wilcox, P.D.; Wisnom, M.R.; Friswell, M.I.; Drinkwater, B.W. Acoustic emission during fatigue crack growth in aluminium plates. In Proceedings of the 9th European Conference on NDT (ECNDT 2006), Berlin, Germany, 25–29 September 2006; pp. 25–29. [Google Scholar]
- Joseph, R.; Giurgiutiu, V. Analytical and Experimental Study of Fatigue-Crack-Growth AE Signals in Thin Sheet Metals. Sensors 2020, 20, 5835. [Google Scholar] [CrossRef]
- Everton, S.; Dickens, P.; Tuck, C.; Dutton, B. Evaluation of laser ultrasonic testing for inspection of metal additive manufacturing. Proc. SPIE 2015, 9353, 935316. [Google Scholar] [CrossRef]
- Mazurek, M.; Austin, R. Nondestructive Inspection of Additive Manufactured Parts in the Aerospace Industry. DSIAC J. 2016, 3, 13–22. [Google Scholar]
- Thompson, A.; Maskery, I.; Leach, R.K. X-ray computed tomography for additive manufacturing: A review. Meas. Sci. Technol. 2016, 27, 072001. [Google Scholar] [CrossRef]
- Jiao, S.; Cheng, L.; Li, X.; Li, P.; Ding, H. Monitoring fatigue cracks of a metal structure using an eddy current sensor. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 118. [Google Scholar] [CrossRef]
- Lindley, T.; Palmer, I.; Richards, C. Acoustic emission monitoring of fatigue crack growth. Mater. Sci. Eng. 1978, 32, 1–15. [Google Scholar] [CrossRef]
- Aggelis, D.; Kordatos, E.; Matikas, T. Acoustic emission for fatigue damage characterization in metal plates. Mech. Res. Commun. 2011, 38, 106–110. [Google Scholar] [CrossRef]
- Roberts, T.; Talebzadeh, M. Acoustic emission monitoring of fatigue crack propagation. J. Constr. Steel Res. 2003, 59, 695–712. [Google Scholar] [CrossRef]
- Das, A.K.; Leung, C.K. A fundamental method for prediction of failure of strain hardening cementitious composites without prior information. Cem. Concr. Compos. 2020, 114, 103745. [Google Scholar] [CrossRef]
- Das, A.K.; Leung, C.K. Fast Tomography: A greedy, heuristic, mesh size–independent methodology for local velocity reconstruction for AE waves in distance decaying environment in semi real-time. Struct. Health Monit. 2022, 21, 1555–1573. [Google Scholar] [CrossRef]
- Prosser, W.H. The propagation characteristics of the plate modes of acoustic emission waves in thin aluminum plates and thin graphite/epoxy composite plates and tubes. J. Acoust. Soc. Am. 1992, 92, 3441–3442. [Google Scholar] [CrossRef]
- Eaton, M.; Pullin, R.; Holford, K. Acoustic emission source location in composite materials using Delta T Mapping. Compos. Part A Appl. Sci. Manuf. 2012, 43, 856–863. [Google Scholar] [CrossRef]
- Fortin, J.; Stanchits, S.; Dresen, G.; Gueguen, Y. Acoustic Emissions Monitoring during Inelastic Deformation of Porous Sandstone: Comparison of Three Modes of Deformation. Pure Appl. Geophys. 2009, 166, 823–841. [Google Scholar] [CrossRef]
- Al-Jumaili, S.K.; Eaton, M.J.; Holford, K.M.; Pearson, M.R.; Crivelli, D.; Pullin, R. Characterisation of fatigue damage in composites using an Acoustic Emission Parameter Correction Technique. Compos. Part B Eng. 2018, 151, 237–244. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, W.-Z.; Zhang, Y.-N.; Ding, Z.-J. Cluster analysis of acoustic emission signals and deformation measurement for delaminated glass fiber epoxy composites. Compos. Struct. 2018, 195, 349–358. [Google Scholar] [CrossRef]
- Cousland, S.; Scala, C. Acoustic emission during the plastic deformation of aluminium alloys 2024 and 2124. Mater. Sci. Eng. 1983, 57, 23–29. [Google Scholar] [CrossRef]
- Scala, C.; Cousland, S. Acoustic emission during fatigue crack propagation in the aluminium alloys 2024 and 2124. Mater. Sci. Eng. 1983, 61, 211–218. [Google Scholar] [CrossRef]
- Bhuiyan, Y.; Lin, B.; Giurgiutiu, V. Acoustic emission sensor effect and waveform evolution during fatigue crack growth in thin metallic plate. J. Intell. Mater. Syst. Struct. 2017, 29, 1275–1284. [Google Scholar] [CrossRef]
- Yao, X.; Vien, B.S.; Davies, C.; Chiu, W.K. Acoustic Emission Source Characterisation during Fatigue Crack Growth in Al 2024-T3 Specimens. Sensors 2022, 22, 8796. [Google Scholar] [CrossRef]
- Das, A.K.; Leung, C.K. Power spectral entropy of acoustic emission signal as a new damage indicator to identify the operating regime of strain hardening cementitious composites. Cem. Concr. Compos. 2019, 104, 103409. [Google Scholar] [CrossRef]
- Chang, H.; Han, E.; Wang, J.Q.; Ke, W. Acoustic emission study of corrosion fatigue crack propagation mechanism for LY12CZ and 7075-T6 aluminum alloys. J. Mater. Sci. 2005, 40, 5669–5674. [Google Scholar] [CrossRef]
- Hyun, J.-S.; Song, G.-W.; Kim, B.-S.; Park, S.-M. The evaluation of fatigue crack propagation by acoustic emission. In Proceedings of the 26th European Conference on Acoustic Emission Testing, Berlin, Germany, 15–17 September 2004. [Google Scholar]
- Bi, H.; Li, Z.; Hu, D.; Toku-Gyamerah, I.; Cheng, Y. Cluster analysis of acoustic emission signals in pitting corrosion of low carbon steel. Mater. Werkst. 2015, 46, 736–746. [Google Scholar] [CrossRef]
- Sause, M.; Gribov, A.; Unwin, A.; Horn, S. Pattern recognition approach to identify natural clusters of acoustic emission signals. Pattern Recognit. Lett. 2012, 33, 17–23. [Google Scholar] [CrossRef]
- Geng, R. Modern acoustic emission technique and its application in aviation industry. Ultrasonics 2006, 44 (Suppl. S1), e1025–e1029. [Google Scholar] [CrossRef]
- Wirtz, S.F.; Söffker, D. Application of Shape-based Similarity Measures to Classification of Acoustic Emission Waveforms. Struct. Health Monit. 2017. [CrossRef]
- Kaphle, M.; Tan, A.C.C.; Thambiratnam, D.P.; Chan, T.H.T. Identification of acoustic emission wave modes for accurate source location in plate-like structures. Struct. Control. Health Monit. 2012, 19, 187–198. [Google Scholar] [CrossRef]
- Unnorsson, R. Hit Detection and Determination in AE Bursts. In Acoustic Emission—Research and Applications; IntechOpen: London, UK, 2013. [Google Scholar]
- Bhuiyan, M.Y.; Giurgiutiu, V. The signatures of acoustic emission waveforms from fatigue crack advancing in thin metallic plates. Smart Mater. Struct. 2018, 27, 015019. [Google Scholar] [CrossRef]
- Wisner, B.; Mazur, K.; Perumal, V.; Baxevanakis, K.; An, L.; Feng, G.; Kontsos, A. Acoustic emission signal processing framework to identify fracture in aluminum alloys. Eng. Fract. Mech. 2019, 210, 367–380. [Google Scholar] [CrossRef]
- Pomponi, E.; Vinogradov, A. A real-time approach to acoustic emission clustering. Mech. Syst. Signal Process. 2013, 40, 791–804. [Google Scholar] [CrossRef]
- Saha, I.; Sagar, R.V. Classification of the acoustic emissions generated during the tensile fracture process in steel fibre reinforced concrete using a waveform-based clustering method. Constr. Build. Mater. 2021, 294, 123541. [Google Scholar] [CrossRef]
- Sause, M.; Hamstad, M. Acoustic Emission Analysis. In Comprehensive Composite Materials II; Elsevier: Amsterdam, The Netherlands, 2018; pp. 291–326. [Google Scholar]
- Hassan, F.; Bin Mahmood, A.K.; Yahya, N.; Saboor, A.; Abbas, M.Z.; Khan, Z.; Rimsan, M. State-of-the-Art Review on the Acoustic Emission Source Localization Techniques. IEEE Access 2021, 9, 101246–101266. [Google Scholar] [CrossRef]
- Yu, F.; Wu, Q.; Okabe, Y.; Kobayashi, S.; Saito, K. The identification of damage types in carbon fiber–reinforced plastic cross-ply laminates using a novel fiber-optic acoustic emission sensor. Struct. Health Monit. 2016, 15, 93–103. [Google Scholar] [CrossRef]
- Hamstad, M. Acoustic emission signals generated by monopole (pencil lead break) versus dipole sources: Finite element modeling and experiments. J. Acoust. Emiss. 2007, 25, 92–106. [Google Scholar]
- Maslouhi, A. Fatigue crack growth monitoring in aluminum using acoustic emission and acousto-ultrasonic methods. Struct. Control. Health Monit. 2011, 18, 790–806. [Google Scholar] [CrossRef]
- Rajic, N.; Rosalie, C.; Van Der Velden, S.; Rose, L.F.; Smithard, J.; Chiu, W.K. A novel high density piezoelectric sensing capability for in situ modal decomposition of acoustic emissions. In Proceedings of the 9th European Workshop on Structural Health Monitoring, Manchester, UK, 10–13 July 2018. [Google Scholar]
- Rajic, N.; Rosalie, C.; Vien, B.S.; Van Der Velden, S.; Rose, L.F.; Smithard, J.; Chiu, W.K. In situ wavenumber–frequency modal decomposition of acoustic emissions. Struct. Health Monit. 2020, 19, 2033–2050. [Google Scholar] [CrossRef]
- Sause, M.G. Investigation of pencil-lead breaks as acoustic emission sources. J. Acoust. Emiss. 2011, 29, 184–196. [Google Scholar]
- Smithard, J.; Rajic, N.; Van Der Velden, S.; Norman, P.; Rosalie, C.; Galea, S.; Mei, H.; Lin, B.; Giurgiutiu, V. An Advanced Multi-Sensor Acousto-Ultrasonic Structural Health Monitoring System: Development and Aerospace Demonstration. Materials 2017, 10, 832. [Google Scholar] [CrossRef]
- Brian Pavlakovic, M.L. Disperse User’s Manual; Non-Destructive Testing Laboratory, Department of Mechanical Engineering, Imperial College: London, UK, 2001. [Google Scholar]
- Alleyne, D.; Cawley, P. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. J. Acoust. Soc. Am. 1991, 89, 1159–1168. [Google Scholar] [CrossRef]
- Nadarajah, N. Novel quantitative sizing of delamination in hard-to-inspect locations. In Mechanical and Aerospace Engineering; Monash University: Clayton, VIC, Australia, 2017; p. 256. [Google Scholar]
- ANSYS. User’s Manual for Revision 5.0; Swanson Analysis Systems: Canonsburg, PA, USA, 1994. [Google Scholar]
- Vien, B.S.; Chiu, W.K.; Rose, L.R.F. Experimental Investigation of Second-Harmonic Lamb Wave Generation in Additively Manufactured Aluminum. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2018, 1, 14. [Google Scholar] [CrossRef]
- Hamstad, M.A. Comparison of wavelet transform and Choi-Williams distribution to determine group velocities for different acoustic emission sensors. J. Acoust. Emiss. 2008, 26, 40–59. [Google Scholar]
- Vien, B.S.; Chiu, W.; Rose, L. An experimental study on the scattering of edge guided waves by a small edge crack in an isotropic plate. In Proceedings of the 8th European Workshop on Structural Health Monitoring (EWSHM 2016), Bilbao, Spain, 5–8 July 2016. [Google Scholar]
- Vien, B.; Nadarajah, N.; Rose, F.; Chiu, W.K. Scattering of the Symmetrical Edge-guided Wave by a Small Edge Crack in an Isotropic Plate. Struct. Health Monit. 2015. [CrossRef]
- Vien, B.S. Lamb Wave Approach to Identify Hidden Cracks in Hard-to-Inspect Areas of Metallic Structures; Monash University: Clayton, VIC, Australia, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, X.; Vien, B.S.; Rajic, N.; Rosalie, C.; Rose, L.R.F.; Davies, C.; Chiu, W.K. Modal Decomposition of Acoustic Emissions from Pencil-Lead Breaks in an Isotropic Thin Plate. Sensors 2023, 23, 1988. https://doi.org/10.3390/s23041988
Yao X, Vien BS, Rajic N, Rosalie C, Rose LRF, Davies C, Chiu WK. Modal Decomposition of Acoustic Emissions from Pencil-Lead Breaks in an Isotropic Thin Plate. Sensors. 2023; 23(4):1988. https://doi.org/10.3390/s23041988
Chicago/Turabian StyleYao, Xinyue, Benjamin Steven Vien, Nik Rajic, Cedric Rosalie, L. R. Francis Rose, Chris Davies, and Wing Kong Chiu. 2023. "Modal Decomposition of Acoustic Emissions from Pencil-Lead Breaks in an Isotropic Thin Plate" Sensors 23, no. 4: 1988. https://doi.org/10.3390/s23041988