Machine Learning Analysis of Hyperspectral Images of Damaged Wheat Kernels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. DON Content Quantification
2.3. Image Collection and Data Collection
2.4. Data Analysis Pipeline
2.4.1. Classification of Kernels into Symptomatic and Non-Symptomatic Using Machine Learning Methods
2.4.2. Regression of Percent Symptomatic Kernels over Total Kernels with GC-MS DON Content
3. Results and Discussion
3.1. Machine Learning of Spectral Reflectance Can Separate Background and Foreground (Kernel)
3.2. Three-Class Classification: Background, Non-Symptomatic Area, and Symptomatic Area
3.3. Correlation of DON Content with Pixel Classification Results
3.4. Segmentation of Kernels and Regression of DON Content with Percentage of Severe Kernels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Production, F.; Statistics, T. QC/Visualize. 2020. Available online: http://www.fao.org/faostat/en/\#data (accessed on 30 November 2022).
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef] [PubMed]
- González-Esteban, Á.L. Patterns of world wheat trade, 1945–2010: The long hangover from the second food regime. J. Agrar. Chang. 2018, 18, 87–111. [Google Scholar] [CrossRef] [Green Version]
- Curtis, B.C.; Rajaram, S.; Gómez Macpherson, H. Bread Wheat: Improvement and Production; Food and Agriculture Organization of the United Nations (FAO): Roman, Italy, 2002. [Google Scholar]
- Martinez-Espinoza, A.; Ethredge, R.; Youmans, V.; John, B.; Buck, J. Identification and Control of Fusarium Head Blight (Scab) of Wheat in Georgia; University of Georgia Extension: Athens, GA, USA, 2014; pp. 1–8. [Google Scholar]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases—A field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef]
- Sobrova, P.; Adam, V.; Vasatkova, A.; Beklova, M.; Zeman, L.; Kizek, R. Deoxynivalenol and its toxicity. Interdiscip. Toxicol. 2010, 3, 94. [Google Scholar] [CrossRef]
- Kleczewski, N. Fusarium head blight management in wheat. Cooperative 2014. Available online: http://extension.udel.edu/factsheets/fusarium-headblight-management-in-wheat/ (accessed on 1 December 2022).
- Mills, K.; Salgado, J.; Paul, P.A. Fusarium Head Blight or Head Scab of Wheat, Barley and Other Small Grain Crops; CFAES Publishing, Ohio State University: Columbus, OH, USA, 2016; Available online: https://ohioline.osu.edu/factsheet/plpath-cer-06 (accessed on 1 December 2022).
- Mcmullen, M.; Jones, R.; Gallenberg, D.; America, S. Scab of Wheat and Barley: A Re-emerging Disease of Devastating Impact. Plant Dis. 1997, 81, 1340–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friskop, A. Scab Plant Disease Management NDSU Extension Fusarium Head Blight (Scab) of Small Grains Fusarium Head Blight (Scab) of Small Grains Fusarium Head Blight PP804 (Revised); NDSU Extension Service, North Dakota State University: Fargo, ND, USA, 2018; Volume 804. [Google Scholar]
- Dohlman, E. Mycotoxin Hazards and Regulations. In International Trade and Food Safety: Economic Theory and Case Studies; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 2003; p. 97. [Google Scholar]
- Abdulridha, J.; Ampatzidis, Y.; Kakarla, S.C.; Roberts, P. Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precis. Agric. 2020, 21, 955–978. [Google Scholar] [CrossRef]
- Gold, K.M.; Townsend, P.A.; Larson, E.R.; Herrmann, I.; Gevens, A.J. Contact reflectance spectroscopy for rapid, accurate, and nondestructive phytophthora infestans clonal lineage discrimination. Phytopathology 2020, 110, 851–862. [Google Scholar] [CrossRef] [Green Version]
- Nagasubramanian, K.; Jones, S.; Sarkar, S.; Singh, A.K.; Singh, A.; Ganapathysubramanian, B. Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems. Plant Methods 2018, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Ge, Y.; Stoerger, V.; Schnable, J.C. High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front. Plant Sci. 2017, 8, 1348. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Wu, G.; Tian, C.; Li, N.; Yang, H.; Bai, Y.; Zhang, B. Hyperspectral imaging for early identification of strawberry leaves diseases with machine learning and spectral fingerprint features. Infrared Phys. Technol. 2021, 118, 103898. [Google Scholar] [CrossRef]
- Wang, D.; Vinson, R.; Holmes, M.; Seibel, G.; Bechar, A.; Nof, S.; Tao, Y. Early detection of tomato spotted wilt virus by hyperspectral imaging and outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN). Sci. Rep. 2019, 9, 4377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumpf, T.; Mahlein, A.-K.; Steiner, U.; Oerke, E.-C.; Dehne, H.-W.; Plümer, L. Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput. Electron. Agric. 2010, 74, 91–99. [Google Scholar] [CrossRef]
- Nagasubramanian, K.; Jones, S.; Singh, A.K.; Sarkar, S.; Singh, A.; Ganapathysubramanian, B. Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods 2019, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbedo, J.G.A.; Guarienti, E.M.; Tibola, C.S. Detection of sprout damage in wheat kernels using NIR hyperspectral imaging. Biosyst. Eng. 2018, 175, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Paul, P.A.; Lipps, P.E.; Madden, L.V. Relationship between visual estimates of Fusarium head blight intensity and deoxynivalenol accumulation in harvested wheat grain: A meta-analysis. Phytopathology 2005, 95, 1225–1236. [Google Scholar] [CrossRef] [Green Version]
- Lohumi, S.; Lee, H.; Kim, M.S.; Qin, J.; Cho, B.K. Raman hyperspectral imaging and spectral similarity analysis for quantitative detection of multiple adulterants in wheat flour. Biosyst. Eng. 2019, 181, 103–113. [Google Scholar] [CrossRef]
- Wei, X.; Johnson, M.A.; Langston, D.B.; Mehl, H.L.; Li, S. Identifying optimal wavelengths as disease signatures using hyperspectral sensor and machine learning. Remote Sens. 2021, 13, 2833. [Google Scholar] [CrossRef]
- Babu, R.G.; Chellaswamy, C. Different stages of disease detection in squash plant based on machine learning. J. Biosci. 2022, 47, 1–14. [Google Scholar] [CrossRef]
- Poornappriya, T.S.; Gopinath, R. Rice plant disease identification using artificial intelligence approaches. Int. J. Electr. Eng. Technol. 2020, 11, 392–402. [Google Scholar] [CrossRef]
- Tomar, A.; Malik, H.; Kumar, P.; Iqbal, A. Machine Learning, Advances in Computing, Renewable Energy and Communication; Lecture Notes in Electrical Engineering; Springer: Singapore, 2021; Volume 915. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in {P}ython. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Duckett, T.; Pearson, S.; Blackmore, S.; Grieve, B. Agricultural Robotics: The Future of Robotic Agriculture. arXiv 2018, arXiv:1806.06762. [Google Scholar]
- Kicherer, A.; Herzog, K.; Bendel, N.; Klück, H.-C.; Backhaus, A.; Wieland, M.; Rose, J.C.; Klingbeil, L.; Läbe, T.; Hohl, C.; et al. Phenoliner: A new field phenotyping platform for grapevine research. Sensors 2017, 17, 1625. [Google Scholar] [CrossRef] [Green Version]
- Rahim, U.F.; Utsumi, T.; Mineno, H. Comparison of grape flower counting using patch-based instance segmentation and density-based estimation with convolutional neural networks. In Proceedings of the International Symposium on Artificial Intelligence and Robotics 2021, Fukuoka, Japan, 21–22 August 2021; Volume 11884, pp. 412–423. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. arXiv 2017, arXiv:1703.06870. [Google Scholar]
- Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep learning for generic object detection: A survey. Int. J. Comput. Vis. 2020, 128, 261–318. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; et al. Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7310–7311. [Google Scholar]
- Tacke, B.K.; Casper, H.H. Determination of deoxynivalenol in wheat, barley, and malt by column cleanup and gas chromatography with electron capture detection. J. AOAC Int. 1996, 79, 472–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez-Sanchez, C.; Wilson, N.; McMaster, N.; Gantulga, D.; Freedman, B.G.; Senger, R.; Schmale, D.G. A mycotoxin transporter (4D) from a library of deoxynivalenol-tolerant microorganisms. Toxicon X 2020, 5, 100023. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, A.J.; Holmes, R.; Gaskins, E.; Jordan, K.E.; Hicks, D.S.; Fitzgerald, J.; Griffey, C.A.; Mason, R.E.; Harrison, S.A.; Murphy, J.P.; et al. Evaluation of Methods for Measuring Fusarium-Damaged Kernels Wheat. Agronomy 2022, 12, 532. [Google Scholar] [CrossRef]
- Abdulla, W. Mask R-CNN for Object Detection and Instance Segmentation on Keras and TensorFlow. 2017. Available online: https://github.com/matterport/Mask_RCNN (accessed on 1 December 2022).
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland; Volume 8693, pp. 740–755, Computer Vision—ECCV 2014. Lecture Notes in Computer Science. [Google Scholar] [CrossRef] [Green Version]
Threshold % | Coefficient of Determination (R2) |
---|---|
5 | 0.23 |
10 | 0.31 |
15 | 0.36 |
20 | 0.44 |
30 | 0.57 |
40 | 0.62 |
50 | 0.73 |
60 | 0.74 |
70 | 0.75 |
80 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhakal, K.; Sivaramakrishnan, U.; Zhang, X.; Belay, K.; Oakes, J.; Wei, X.; Li, S. Machine Learning Analysis of Hyperspectral Images of Damaged Wheat Kernels. Sensors 2023, 23, 3523. https://doi.org/10.3390/s23073523
Dhakal K, Sivaramakrishnan U, Zhang X, Belay K, Oakes J, Wei X, Li S. Machine Learning Analysis of Hyperspectral Images of Damaged Wheat Kernels. Sensors. 2023; 23(7):3523. https://doi.org/10.3390/s23073523
Chicago/Turabian StyleDhakal, Kshitiz, Upasana Sivaramakrishnan, Xuemei Zhang, Kassaye Belay, Joseph Oakes, Xing Wei, and Song Li. 2023. "Machine Learning Analysis of Hyperspectral Images of Damaged Wheat Kernels" Sensors 23, no. 7: 3523. https://doi.org/10.3390/s23073523